Interictal High Frequency Oscillations as Neurophysiologic Biomarkers of Epileptogenicity

December 10, 2013

Joyce Y. Wu, MD
Associate Professor
Division of Pediatric Neurology
David Geffen School of Medicine at UCLA
<table>
<thead>
<tr>
<th>Name of Commercial Interest</th>
<th>Type of Financial Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberous Sclerosis Alliance</td>
<td>PI</td>
</tr>
<tr>
<td>Today’s and Tomorrow’s Children Fund</td>
<td>PI</td>
</tr>
<tr>
<td>Novartis – RAD001M2301, RAD001M2304</td>
<td>Site PI</td>
</tr>
<tr>
<td>DOD/CDMRP – 20102338, W81XWH</td>
<td>Site PI</td>
</tr>
<tr>
<td>NIH – K23 NS051637, R34 MH089299, P20 NS080199, U01 NS082320, R01 NS082649</td>
<td>PI/site PI/Co-I</td>
</tr>
</tbody>
</table>
Learning Objectives

• To gain better understanding of a neurophysiologic/EEG biomarker

• To evaluate the role of a neurophysiologic/EEG biomarker
High Frequency Oscillations
High Frequency Oscillations

Ripples
100-250 Hz

Fast Ripples
250-500 Hz
High Frequency Oscillations

- 100-250 Hz
 - Ripples
 - Ictal
 - Interictal

- 250-500 Hz
 - Fast Ripples
 - Ictal
 - Interictal
Normal vs Pathologic HFO

• Physiologic HFO
 • Sensory stimulation
 • Electrical stimulation

• Pathologic R and FR
 • Spontaneously occurring
 • 100-250 Hz and 250-500 Hz
 • At least 4 oscillations
 • < 1 second in duration
Fast Ripples as Surrogate Marker in Animal Models

- 1st described in a rat model in 1999
- Found only in epileptic rats, before seizure onset, absent in control rats
- Localizing to the epileptogenic zone (mesial temporal structures)

Bragin et al 1999 Epilepsia
Spatially Localizing

Temporally Predictive
Micro- or macroelectrodes?

Interictal High-Frequency Oscillations (80–500Hz) in the Human Epileptic Brain: Entorhinal Cortex

Anatol Bragin, PhD,1,2 Charles L. Wilson, PhD,1,2 Richard J. Staba, PhD,3 Mark Reddick, MS,3 Itzhak Fried, MD, PhD,4,5 and Jerome Engel, Jr., MD, PhD1,2,3

• First human HFO study
• Utilized depth microelectrodes
• Implanted in mesial temporal lobe/entorhinal cortex
• Ripples (100-200 Hz) and FR (250-500 Hz)
• Seen in 12 of 19 patients
Micro- or macroelectrodes?

Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients

Elena Urrestarazu,* Rahul Chander, François Dubeau and Jean Gotman

- Depth *macro*electrodes
- Ripples in all 7 patients (80-200 Hz)
- FR in 5 of 7 patients (250-500 Hz)
Correlate with neuroimaging?

High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type

Julia Jacobs, Pierre LeVan, Claude-Édouard Châtillon, André Olivier, François Dubeau and Jean Gotman

- Depth *macro*electrodes
- Mesial temporal atrophy, focal cortical dysplasia, nodular heterotopia – no etiology-dependent HFO findings
- Ripples (80-250 Hz) and FR (250-500 Hz) were present outside of the lesion
- Lesion alone does not necessarily correlate with HFO
• Ripples and FR can be used to localize the seizure onset zone in non-lesional epilepsy patients
• Ripples and FR are more specific and accurate than spikes in delineating the seizure onset zone

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spikes</td>
<td>91%</td>
<td>30%</td>
<td>44%</td>
</tr>
<tr>
<td>Ripples</td>
<td>91%</td>
<td>40%</td>
<td>54%</td>
</tr>
<tr>
<td>Fast Ripples</td>
<td>66%</td>
<td>80%</td>
<td>76%</td>
</tr>
</tbody>
</table>
• Rate of spikes, ripples, and FR were assessed 1) before and after seizures without medication changes, and 2) before and after medication reduction without intervening seizures
• After seizures, spikes increased, but ripples and FR stayed at similar rates
• After medication reduction, ripples and FR rate and duration both increased, similar to seizures
Localizing to seizure onset zone?

- HFO often occurred independently of spikes
- HFO prominent in the seizure onset zone
- Seizure onset zone can be identified with high specificity with only 10 minutes of HFO

Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain

Julia Jacobs, Pierre LeVan, Rahul Chander, Jeffery Hall, François Dubeau, and Jean Gotman

Epilepsia, 49(11):1893–1907, 2008
Localizing to the epileptogenic zone?

Seizure outcome?
• Removal of HFO-generating area correlated with good surgical outcome
• HFO could be used as a marker of epileptogenicity
• HFO may be more accurate than spikes or seizure onset
• Patients in whom the majority of HFO-generating areas remained had poor surgical outcome
• FR present in neocortex
• All subdural macroelectrodes
• First study in children

• All intraoperative electrocorticography, avg nearly 12 minutes
• FR present in 80%, 24/30 consecutive electrocorticographies
• All 19 children with complete resection of FR-generating area are seizure-free, avg 27 months postop follow-up
• Remaining 5 children with incomplete resection of FR-generating area all continued with seizures postop
• FR found outside of MRI lesions and outside of FDG-PET hypometabolic areas
16 yo M with intractable epilepsy for 4 yr (visual blurring and distortion)
Prospective HFO

• Next 30 consecutive ECoGs reviewed prospectively for FR, within 1 week of surgery, often within 24 hours

• Surgical follow up, median 36 months

• FR detected in 80%, in 24 patients

• 20 seizure free patients had complete FR resection; 3 with TSC had remote seizure foci, and 1 had contralateral seizure focus

Hussain et al (Submitted)
“Live” Intraoperative HFO

• In the same study, 11/30 ECoGs were interpreted “live” in the operating room, immediately after recording ended and after surgical decisions were made
• “live” read did not alter or delay surgery
• No significant difference between “live” read and an unrushed second read

Hussain et al (Submitted)
How do FR compare to other ECoG findings?

- Combining retrospective and prospective series, total 60 patients, among FR, paroxysmal fast activity (PFA), spikes, continuous epileptiform discharges (CEDs), and focal slowing, FR fared the best
 - Highest specificity (100%)
 - Highest positive predictive value (100%)
 - Highest Accuracy (87.5%)

Hussain et al (Submitted)
FR Resection & Postop Sz Freedom
(all 60 children)

Hazard Ratio 31.9, p < 0.001

Hussain et al (Submitted)
Spatially Localizing

Temporally Predictive

Clinical Trial?

Spatially Localizing

Non-Invasive

Temporally Predictive?
Interictal scalp fast oscillations as a marker of the seizure onset zone

Ripples (80-200 Hz)

Gamma (40-80 Hz)
Scalp Fast Ripples

Conventional Setting
30 mm/sec
1 Hz / 70 Hz / 60 Hz notch

Fast Ripple Setting
300 mm/sec
250 Hz / 500 Hz
Scalp Fast Ripples

- Tuberous Sclerosis Complex
- Before Seizure Onset – Family History, Skin Findings, or Cardiac Rhabdomyoma
- Prospective serial scalp EEGs
- Can HFO be a predictive temporal marker?
Epilepsy and Autism Biomarker Studies in Infants

UCLA Tuberous Sclerosis Complex (TSC) Center

NIH TSC Clinical Trial - Potential EEG Biomarkers and Antiepileptogenic Strategies for Epilepsy in TSC

NEEDED: Newborns to 6 months old infants with TSC with NO history of seizures

Epilepsy in Tuberous Sclerosis Complex (TSC) Research Study... change the outcome

What:
The purpose of this research study is to look for early signs of autism in children with Tuberous Sclerosis Complex (TSC), a genetic disorder where autism is common.

Who:
Infants 3 to 9 months old who are diagnosed with TSC may be eligible to participate.

We are looking for children with Tuberous Sclerosis Complex (TSC) between the ages of 0 months and 2 years!
In summary…

• HFO first seen in rat models as potential surrogate marker of the epileptogenic zone
• First recorded in epilepsy patients with depth microelectrodes, then depth macroelectrodes, and subdural macroelectrodes
• First in mesial temporal structures, now also neocortex
• First in adults, now also children
• First hours of implanted recording, now minutes of implanted/intraoperative ECoG
In summary…

- FR localization independent of neuroimaging
- FR independent of etiology
- FR reflects seizure frequency, disease course
- FR localizes to the seizure onset zone
- FR localizes to the epileptogenic zone, with complete FR excision leading to sz freedom
- can be seen “live” in the OR
- detectable non-invasively on scalp EEG

Interictal HFO a good spatial marker of epileptogenicity and the epileptogenic zone
Future Directions

• Surgical Clinical Trial?
• Temporally Predictive?

Thank You