Algorithm for the Treatment of Non-Lesional Epilepsy

December 8, 2013

Lara E. Jehi, MD
Cleveland Clinic
Disclosure

Research Support: NCATS, UCB
Editorial Board: Epilepsia, Epilepsy Currents, Neurotherapeutics.
Learning Objectives

• Provide an evidence-based algorithm for the treatment of non-lesional epilepsy
Key Principles

“Algorithm” definition:
A logical set of rules for solving a specific problem, which assumes that all of the data are objective, that there are a finite number of solutions to the problem, and that there are logical steps that must be performed to arrive at each of those solutions.

Key Principles

“Algorithm” definition:
A logical set of rules for solving a specific problem, which assumes that all of the data are objective, that there are a finite number of solutions to the problem, and that there are logical steps that must be performed to arrive at each of those solutions.

Data

Definition of intractability
Risks
Complications

Apply to both lesional and non-lesional epilepsy

31% of patients currently undergoing resective epilepsy surgery have a normal brain MRI vs 21% ten years ago (Jehi et al., 2013).

Non-lesional epilepsy is an undeniable growing proportion of our practice
Key Principles

“Algorithm” definition:
A logical set of rules for solving a specific problem, which assumes that all of the data are objective, that there are a finite number of solutions to the problem, and that there are logical steps that must be performed to arrive at each of those solutions.

Solutions?
Non-resective treatment outcomes

Anti-epileptic drugs:
45-50% new onset
35% 12-mo remission in drug resistant epilepsy
(Callaghan 2011)

Dietary therapies:
38%-48% responder-rate, mostly in non-lesional patients
(Kossof 2013)

Neuro-modulation:
40%-54% responder-rate
(Uthman 2004, Fisher 2010, Morell 2011)

Emerging therapies: radiosurgery, ultrasound, cooling, optogenetics, etc...
Surgical Outcomes

Non-lesional Epilepsy

<table>
<thead>
<tr>
<th>Temporal lobe resections</th>
<th>Extra-temporal lobe resections</th>
</tr>
</thead>
<tbody>
<tr>
<td>48%–67%</td>
<td>34%–55%</td>
</tr>
<tr>
<td>completely seizure-free</td>
<td>completely seizure-free</td>
</tr>
<tr>
<td>at 5-7 years</td>
<td>at 2-5 years</td>
</tr>
</tbody>
</table>

Key Principles

“Algorithm” definition:
A logical set of rules for solving a specific problem, which assumes that all of the data is objective, that there are a finite number of solutions to the problem, and that there are logical steps that must be performed to arrive at each of those solutions.

Steps?
Key investigative steps..

- VEEG
- brain MRI
- Neuropsychiatric evaluation
- PET
- Ictal SPECT
- MEG
- Invasive EEG
Treatment Algorithm

Is epilepsy medically intractable?
- Yes → Is epilepsy focal?
 - No → Anti-epileptic drugs
 - Yes → Is epilepsy "surgical"?
 - No → Neuro-modulation
 - Yes → Resective surgery

- No →
 - Is epilepsy focal?
 - No → Anti-epileptic drugs
 - Yes → Is epilepsy "surgical"?
 - No → Neuro-modulation
 - Yes → Resective surgery

Dietary therapy

American Epilepsy Society | 2013 Annual Meeting
Impact on Clinical Care and Practice
"No two persons ever read the same book."

Edmund Wilson
Medical “person”...
Data

Definition of intractability

Risks

Complications

31% of patients currently undergoing resective epilepsy surgery have a normal brain MRI vs 21% ten years ago (Jehi et al., 2013).

...But there is also the risk of complications from a pre-surgical evaluation (invasive EEG)....
Non-resective treatment outcomes

Anti-epileptic drugs:
45-50% new onset
35% 12-mo remission in drug resistant epilepsy

Dietary therapies:
38%-48% responder-rate, mostly in non-lesional patients

Neuro-modulation:
40%-54% responder-rate

....and we have many successful medical options..

Emerging therapies: radiosurgery, ultrasound, cooling, optogenetics, etc...

American Epilepsy Society | 2013 Annual Meeting
Surgical Outcomes
Non-lesional Epilepsy

Temporal lobe resections
48%- 67%
completely

Extra-temporal lobe resections
34%- 55%
completely

…surgery is far from 100% successful..

Lau et al (2013); Lo-Pinto Khoury (2012); Fong et al (2011); Seo et al (2009);

American Epilepsy Society | 2013 Annual Meeting
The price of epilepsy surgery...

- VEEG (s)
- brain MRI (s)
- Neuropsychiatric evaluation
- PET (s)
- Ictal SPECT (s)
- MEG (s)
- Invasive EEG (s)

....and is VERY costly..
Treatment Algorithm

Is epilepsy medically intractable?

No

Is epilepsy focal?

No

Is epilepsy “surgical”?

No

Anti-epileptic drugs

Neuro-modulation

Dietary therapy

Yes

Resective surgery
Surgical “person”...
Non-resective treatment outcomes

Anti-epileptic drugs:
- 45-50% new onset
- 35% 12-mo remission in drug resistant epilepsy
 (Callaghan 2011)
- 70% relapse rate

Dietary therapies:
- 38%-48% responder-rate, mostly in non-lesional patients

Neuro-modulation:
- 40%-54% responder-rate

Responder rate is NOT seizure-free

Emerging therapies: radiosurgery, ultrasound, cooling, optogenetics, etc...

American Epilepsy Society | 2013 Annual Meeting
Surgical Outcomes
Non-lesional Epilepsy

Temporal lobe resections

48%-67%
completely seizure-free
at 5-7 years

Lau et al (2013); Lo-Pinto Khoury (2012); Fong et al (2011); Seo et al (2009);

Extra-temporal lobe resections

34%-55%
completely seizure-free
at 2-5 years

Pre-surgical evaluation

• Minimum:
 • VEEG
 • brain MRI
 • Neuropsychiatric evaluation

Goal is to identify:
1. Ictal onset
2. Safety of resection

• Other (MRI post-processing, EEG f-MRI, etc)
• Invasive EEG (SDE, SEEG)
Treatment Algorithm

Is epilepsy medically intractable?
- No
- Yes

Is epilepsy focal?
- No
- Yes

Is epilepsy “surgical”?
- No
- Yes

Resective surgery
Intractable epilepsy is both a “surgical” AND “medical” disease..

So where is the “objective” truth?
From quest for a lesion..

Epilepsy is a NETWORK disease

...to an appreciation of widespread connectivity

From Human Connectome Project
Assessing surgical candidacy requires an appreciation of the electro-clinical picture.
Pre-surgical evaluation

• Minimum:
 • VEEG
 • brain MRI

• Additional:
 • Ictal SPECT
 • MEG
 • Other (MRI post-processing, EEG f-MRI, etc)

Goal is to develop a surgical hypothesis:
 1- extent of network
 2- functional outcomes

Use all that information to guide Invasive EEG planning (SDE or SEEG)
As soon as possible..

..because the “price” of a surgical evaluation needs to be weighed against...
The price of waiting too long...

Lesional FLE

Non-lesional FLE

Self-fulfilling prophecy

Improved Outcomes with Earlier Surgery for Intractable Frontal Lobe Epilepsy

Thitiwan Simasathien, MD,¹ Sumeet Vadera, MD,² Imad Najm, MD,¹ Ajay Gupta, MD,¹ William Bingaman, MD,² and Lara Jehi, MD³

Simasathien et al., Annals of Neurology, 2013
Impact on Clinical Care and Practice

• Determine medical intractability...as soon as possible
• Determine surgical candidacy...as soon as possible
• Perform the appropriate invasive EEG evaluation only if there is a clear hypothesis
• Improving outcomes requires a better understanding of the mechanisms of epilepsy.
Key Principles

“Algorithm” definition:
A logical set of rules for solving a specific problem, which assumes that all of the data is objective, that there are a finite number of solutions to the problem, and that there are logical steps that must be performed to arrive at each of those solutions.
Treatment Algorithm

Is epilepsy medically intractable?
- Yes
- No

Is epilepsy focal?
- Yes
- No

Is epilepsy "surgical"?
- Yes
- No

Resective surgery

Anti-epileptic drugs

Neuro-modulation

Dietary therapy

American Epilepsy Society | 2013 Annual Meeting