The role of immune system in RSE: preclinical perspectives

Saturday, December 1 2012

Annamaria Vezzani, PhD
Department of Neuroscience
Mario Negri Inst for Pharmacological Research,
Milano, Italy
Disclosure

Nothing to disclose
Learning Objectives

• to understand the role of immunity and inflammation in status epilepticus and in epilepsy

• to describe preclinical data on candidate new targets for novel therapies
Is activation of the immune system a common pathogenetic mechanism?

Experimental precipitating events of SE to study the role of immune system:

- Chemoconvulsants/electrical stimulation
- Febrile status epilepticus (immature rodents)
- Systemic/CNS inflammation+ SE

Table 1. Etiology of status epilepticus

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic</td>
<td>3</td>
<td>8</td>
<td>31</td>
<td>9</td>
<td>20</td>
<td>—</td>
<td>15</td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>Trauma</td>
<td>13</td>
<td>0</td>
<td>30</td>
<td>11</td>
<td>7</td>
<td>17</td>
<td>7</td>
<td>31</td>
<td>4</td>
<td>23</td>
<td>143</td>
</tr>
<tr>
<td>Tumor, space-occupying</td>
<td>4</td>
<td>4</td>
<td>35</td>
<td>2</td>
<td>19</td>
<td>19</td>
<td>3</td>
<td>18</td>
<td>3</td>
<td>4</td>
<td>111</td>
</tr>
<tr>
<td>Vascular</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>4</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>16</td>
<td>12</td>
<td>17</td>
<td>91</td>
</tr>
<tr>
<td>CNS infection/inflammatory</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>19</td>
<td>68</td>
</tr>
<tr>
<td>Febrile</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Toxic-metabolic</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>0</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>Congenital</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>—</td>
<td>33</td>
</tr>
<tr>
<td>Degenerative</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>—</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>—</td>
<td>13</td>
</tr>
<tr>
<td>Unknown or other</td>
<td>1</td>
<td>8</td>
<td>13</td>
<td>0</td>
<td>12</td>
<td>23</td>
<td>9</td>
<td>36</td>
<td>5</td>
<td>20</td>
<td>127</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
<td>30</td>
<td>138</td>
<td>42</td>
<td>86</td>
<td>83</td>
<td>60</td>
<td>110</td>
<td>50</td>
<td>132</td>
<td>756</td>
</tr>
</tbody>
</table>

From Treiman, ref. 105, with permission.
IL-1 Receptor/Toll-like Receptor signaling

Pathogen associated molecular pattern

Microbial-clearance and killing pathways
Apoptotic and necrotic cell-death pathways

Inflammatory mediators

Innate immune system

Sterile inflammation

Status epilepticus
Brain injury
Spontaneous Seizures

Cytokines, Chemokines
mTOR, Complement cascade
Cell adhesion Molecules
Metalloproteases
Cox-2

Neuronal hyperexcitability
Structure of this presentation

Relevant information to design pharmacological intervention

• **Temporal evolution** of the inflammatory process after the first injury

• **Cell types** expressing the inflammatory mediators and responding to them

• **Adult vs immature** brain

Pharmacological intervention

• Intervention **during status epilepticus** to block unremitting seizures

• Intervention **post-SE** to resolve long-term consequences
Inflammatory gene response following SE induced in adult rodents

Soman

- **IL-1β**
- **Piriform Cortex**

- mRNA level (normalized to HPRT)

- **Time following soman exposure**
 - 30min
 - 1h
 - 2h
 - 6h
 - 24h
 - 48h
 - d7
 - control

Electrical SE

- **Hippocampus**

- **De Simoni et al, 2000**

- **IL-1β**
- **IL-1Ra**

- Different triggers but common features
 - Rapid onset
 - Long lasting
 - Lack of resolution

Dhote et al, 2007; see also Svensson et al, 2001; Williams et al, 2003
SE-induced epilepsy in adult rodents

SE induces inflammation

Granulocytes
Macrophages

Latent period (epileptogenesis)

Inflammation outlasts acute seizures

BBB damage

Inflammation persists in epileptic tissue

Ravizza et al, 2008; Marcon et al, 2009; see also Voutsinos-Porche et al, 2004; Dhote et al, 2007; Kutykin-Teplyakov et al, 2009
FEBRILE SE induced by hyperthermia in P14 mice

- IL-1β induced in astrocytes in the absence of cell loss

- Inflammation persists only in epileptic animals (~30%)

Seizure threshold depends on IL-1β

Dubé et al, Ann Neurol, 2005
Heida et al, Epilepsia, 2005

Dubé et al, J Neurosci, 2010
Effects of **pre-existing inflammation** in infant rats on SE

Inflammation in early post-natal development increases SE-induced neuronal cell loss

In adulthood, rats are more susceptible to SE induction and show increased SE-related cell loss

Auvin, Mazarati and Sankar, 2007

Galic and Pittman, 2008; Riazi and Pittman, 2008; Riazi et al, 2010
Human brain: common inflammatory molecules in different etiologies

Activation of IL-1R/TLR signaling

IL-1β (neurons & glia)

mTLE

IL-1R1 (neurons & glia)

HMGB1 (astrocytes & microglia)

TLR4: neurons & astrocytes

RAGE: astrocytes & vessels

Crespel et al, 2002; Boer, Crino et al, 2008; 2010, 2012
Innate immune mechanisms are activated in microglia, astrocytes, neurons during status epilepticus in experimental models & in human epilepsy.

Innate immunity cells express receptors for:
- Glutamate
- ATP (P2X7)
- Low iK⁺, high iCa²⁺ activate the inflammasome

Consequences?
- Ongoing seizures
- Neuropathology
- Spontaneous seizures
- Comorbidities

Brain Injuries
- Seizures
- Brain inflammation

Summary
Treatment options: there are available drugs in clinical use

IL-1β has proconvulsive effects
(Vezzani et al, BBI, 2011)

Blockade of IL-1β synthesis (**VX-765**) or IL1 receptor (**IL-1Ra/Anakinra**) reduce seizure recurrence in acute and chronic seizure models

VX-765 in Phase IIb clinical trial in drug resistant partial epilepsy

Anakinra is used in rheumatoid arthritis

Vezzani et al, Curr Opin Investig Drugs, 2010
Is time of antiinflammatory intervention critical? YES

Anakinra (IL-1ra): Vezzani et al, PNAS 2000; Epilepsia 2002
Marchi et al, Neurobiol Dis, 2011

Antiseizure effects after early intervention

Electrical SE in rats treated after 3 hours with anakinra:
Non significant contribution to the active seizure phase although neuroprotection was afforded
(Vezzani & Loscher, unpublished)

• HMGB1/TLR4
• Activation of P2X7 receptors (Faseb J, 2012)
• Complement cascade (Xiong et al, 2003; Aronica et al, 2007)

Concomitant blockade of different pathways may be required to attain optimal control of inflammation
Is the target important? COX-2 inhibition can potentiate status epilepticus

PGE2 Proconvulsant

PGF2 Anticonvulsant

Kim et al, 2007

N-Mazzacoratti et al, 1995
Post-injury COX-2 inactivation or antagonism of EP2 receptor for PGE2 results in neuroprotection

Lack of COX-2 in neurons: reduced hippocampal cell loss (Serrano et al, 2011)

CA1

Parecoxib, Polascheck et al, 2010; Celocoxib, Jung et al, 2005: neuroprotective

SC-58236 worsens outcome of SE, Holtman et al, 2010
Challenge for pharmacotherapy: disease-modifying drugs
Is brain inflammation a promising target?

- **NSAID**: celecoxib, parecoxib
- **Immunosuppressants**: fingolimod
- **Anti-integrins antibodies**: fingolimod
- **Glia activation inhibitors**: minocycline, Resveratrol

Status epilepticus

- **Prevention**
 - Frequency
 - Seizure duration
 - Seizure type
- **Seizure modification**
- **Cure**

Disease or Syndrome Modification

Reversal of pathology

Co-morbidity modification

Inflammation
- LPS/TLR4
- Poly I:C/TLR3

Neurobehavioral deficits
- Learning and memory
- Mood and behavior
- Other

*Controversial results on seizures outcome

Mazarati et al., 2010; Galic et al, 2008; Riazi et al, 2008

From A. Pitkanen, Epilepsia 2010; reviewed in Ravizza et al, Neurosci Lett, 2011
Innate immunity and inflammation contribute to the consequences of status epilepticus.

- Neuropathology
 - Spontaneous seizures
 - Comorbidities
Consequences of BBB damage

• Albumin induces synthesis of inflammatory mediators in astrocytes

• Albumin induces astrocytes dysfunction: K+ buffering and glutamate reuptake are reduced

 Friedman et al, Epilepsy Res, 2009

• Albumin increases tissue excitability and reduces seizures threshold

 Ivens et al, 2007; Frigerio et al, 2012
Summary & Conclusions

SE activates inflammatory pathways in brain:
- Activation of innate immune mechanisms in brain cells (glia, neurons, endothelial cells)
- Recruitment of leukocytes (*post-SE phase*)

Inflammation promotes SE:
- Acute phase and long term consequences

Inflammation contributes to:
- Neuronal hyperexcitability
- Cell loss
- BBB dysfunction
- Comorbidities

- Anti-inflammatory intervention to control unremitting seizures should be **fast**
- **Combined treatments** should be contemplated

- Delayed (post-injury) anti-inflammatory intervention **ameliorates the outcome:**
 - Survival
 - Neuropathology
 - Spontaneous seizures

DRUGS ARE AVAILABLE FROM CNS & NON CNS INFLAMMATORY DISEASES