Generic Antiepileptic Drugs: Fact and Fiction
November 30, 2012

Michael Privitera, MD
Professor Neurology, University of Cincinnati
Director Epilepsy Center
Disclosure

Commercial Interests
Lilly, Upsher Smith
UCB, Neuren, Eisai

Financial Relationship
DSMB
Research Funding
Learning Objectives

• State the main characteristics of current FDA regulations for approval of generic AED products
• State the main strengths and weaknesses of database studies of generic AED products
• Know that rigorous blood level sampling is critical to assess bioequivalence and performance of generic AED products
Background on the Controversy

- Every day several million tablets of generic AEDs are taken by people with epilepsy.
- Generic drugs can be an important weapon to combat health care costs.
 - FDA estimated $56.7 billion per year saved in 2002 by generic substitution.
- Advocacy groups: indiscriminate generic substitution in people with epilepsy can cause problems because FDA rules allow too much variability across formulations.
- FDA: it has no reliable documentation of generics causing problems and formulations are interchangeable without additional testing.
The AAN:
- Opposes generic substitution of anticonvulsant drugs for the treatment of epilepsy without the attending physician’s approval
- For anticonvulsant drugs, small variations in concentrations between name brands and their generic equivalents can cause toxic effects and/or seizures when taken by patents with epilepsy (…evidence?)

Liow et al, Neurology 2007
US Senate:
- 2009 Appropriations Committee- Report 111-39
- FDA must report to Congress how it is funding studies to resolve questions of AED generic equivalence

For Epilepsy Community: *It is good to have friends in high places*...
Be Careful Which Term You Use

- **Bioequivalence** = pharmacokinetic parameters Cmax and AUC fall within a specified range. Usually compares the brand (reference) to a single generic.

- **Therapeutic equivalence** = two products provide equal seizure control and tolerability. Rarely tested, but inferred by bioequivalence.

- **Switchability** = there is no change in therapeutic effect when one product is switched for another. For example, indiscriminate switching among any of the approved generic products.
FDA Requires Rigorous Bioequivalence Testing

- Area under the plasma concentration time curve (AUC) and maximum concentration (Cmax) measured
- Typically 24-36 *healthy adults, single dose*
 - Subjects do not have epilepsy
 - Subjects are not taking concomitant meds or have comorbid conditions common in patients with epilepsy
- Equivalence: 90% CI of the ratio of the generic to reference compound for both AUC and Cmax fall within 80-125% range
- However: FDA analyzed 2000 BE studies pre-1997 and mean difference Cmax = 4.35% and AUC = 3.56%
*for multiple dosing, Cmin variations may have a clinical effect
FDA Sets “Goalposts” for Generics at 80-125%
BASELINE VS. SWITCHED PRODUCT COMPARISON (90% CI)

A. BRAND

B. EQUIVALENT

C. INEQUIVALENT: NOT APPROVED

D. INDETERMINATE: NOT APPROVED
<table>
<thead>
<tr>
<th></th>
<th>AUC CI</th>
<th>CMAX CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Low</td>
<td>83-90</td>
<td></td>
</tr>
<tr>
<td>Low Generic 1</td>
<td>95.48-101.43</td>
<td>93.81-100.57</td>
</tr>
<tr>
<td>Low Generic 2</td>
<td>100.0-104.54</td>
<td>91.72-103.68</td>
</tr>
<tr>
<td>Theoretical High</td>
<td>105-122</td>
<td></td>
</tr>
<tr>
<td>High Generic 1</td>
<td>102.0-113.8</td>
<td>100.8-105.8</td>
</tr>
<tr>
<td>High Generic 2</td>
<td>97.79-107.97</td>
<td>98.71-107.86</td>
</tr>
</tbody>
</table>

Generic Products for Testing Are Close to Reference
Literature is Full of Retrospective Studies Highlighting Generic Risks

- Physician surveys- 50% of responders saw problems
- Case series follow up from survey-random blood levels (Berg 2008)
- Generic switches associated with high switchback rate and higher costs in Canada (Andermann 2007)
- Generic use associated with higher emergency services use (Zachry 2008)
- No effect of generic use on epilepsy related events (Devine 2010)
Switchbacks on AEDs Significantly Higher than Statin or SSRI

Depakene: 20.9%
Frisium (Clobazam): 20.5%
Lamictal: 12.9%
Zocor: 1.5%
Prozac: 2.9%
Caveats to Most Retrospective Studies

- Open label
 - Any problem with seizure control or adverse effects could have been attributed to generic, causing physician and patient to desire switchback, or visit emergency room
 - No control for stress, sleep deprivation, or adherence (compliance)
 - *Nocebo* effect (opposite of placebo) where an inactive treatment causes negative outcomes

- No rigorous blood levels of AEDs
- No rigorous assessment of seizure frequency
- So... evidence is sparse and equipoise exists
Generic Carbamazepine Products May Show Large Variations

- Five generic CBZ formulation-FDA-approval packets were assessed, using the Freedom of Information Act
- The AUC & Cmax of three generics were accurate copies of Tegretol®
- For two generics, the mean AUC & C_{max} values were near the acceptance range of Tegretol®
- Switches between two generic CBZ formulations produced AUC variations up to 21% & Cmax variations up to 40%

Krauss et al., Ann Neurology, August 2011
Summary of Generic Background Issues

- **Criticisms of FDA testing**
 - Not on people with epilepsy
 - Single dose
 - No concomitant meds
 - No seizure or adverse event outcomes
 - Same rules for any drug—ignores narrow therapeutic index drug differences. FDA advisory committee suggests changing this and definition is forthcoming

- **Criticisms of Anti-generic literature**
 - Uncontrolled
 - Retrospective
 - No rigorous blood levels
What study design can assess the risk of generic substitution?

- First choose the “most disparate” generic products for LTG using the ANDA data plus dissolution characteristics.
- Study 1. Chronic dosing in people with epilepsy, taking LTG comparing “high range” generic vs. “low range” generic.
- Study 2. Single dose study, people with epilepsy, not taking LTG of “high range” generic vs. “low range” generic vs. brand.
- Study 3. Chronic dosing in people with epilepsy taking LTG comparing brand vs. single generic.
EQUIGEN-Chronic Dose Study

MEMS Baseline compliance

randomization

Two levels to assure steady state
randomization

EQUIGEN-single dose STUDY

96 hr PK

Brand 1 dose

High Generic 1 dose

2 wk

washout

96 hr PK

Low Generic 1 dose

2 wk

washout

96 hr PK

Brand 1 dose

2 wk

washout

96 hr PK

Low Generic 1 dose

2 wk

washout

96 hr PK

High Generic 1 dose

2 wk

washout

FINAL PROTOCOL
EQUIGEN Study Group

Michael Privitera, MD
Michel Berg, MD
Timothy Welty, PharmD
Barry Gidal, PharmD
Francisco Diaz, PhD
Rita Alloway, PharmD
BEEP Study Design

- **Patients** not healthy volunteers
- **Clinical use setting**
- **Compliance issue**
 - Nocebo effect concern
- **Blinding** study drugs by **Overencapsulation**
 - In vitro dissolution testing

James Polli, Pharm D
Tricia Ting, MD
University of Maryland
BEEP STUDY: Brand-Generic AED

Randomization

2 wk

Baseline compliance

2 wk

12 hr PK

2 wk

Generic

12 hr PK

2 wk

Brand

12 hr PK

2 wk

Generic

12 hr PK

2 wk

Brand

Three levels to assure steady state

ONGOING PROTOCOL
Generic Drugs: Conclusions

- Indirect evidence that product switches with antiepileptic drugs are associated with more problems
- No prospective, adequately designed studies support this
- Three studies are planned: two chronic dosing and one single dose in people with epilepsy taking concomitant AEDs
My Suggestions for Your Patients

- Discuss with patients the option of generic substitution and encourage them to research the cost difference.
- Identify higher risk groups: pregnant, history of status epilepticus, seizure free and driving.
- Counsel patients about unauthorized formulation substitution. If the pills look different, call us.
- Use the opportunity to counsel patients on compliance/adherence and avoid triggers (alcohol, sleep deprivation).
- Help support the proposed studies.
Annual Fundamentals
Optimal Use of the Newest AEDs and Generics
November 30, 2012

Discussion & Conclusions
Impact on Clinical Care and Practice

• Many new AEDs have been approved in the past several years with new mechanisms of action that should be considered when prescribing. The role of potassium channels is intriguing.
• Pharmacokinetics and drug interactions of the newest AEDs do not present major obstacles.
• Newest AEDs have indications for medication resistant partial seizures or Lennox Gastaut Syndrome
• Evidence is accumulating for use of newest AEDs in pediatrics, status epilepticus and idiopathic generalized epilepsy
• Generic drugs are here to stay and several ongoing studies will add new evidence to help determine optimal use, especially with generic to generic switches.
Thank you!