Modified In Vivo Lung Perfusion Allows for Prolonged Perfusion Without Acute Lung Injury

Pedro Reck dos Santos MD, Ilker Iskender MD, Tiago Machuca MD, David M. Hwang MD, Shaf Keshavjee MD MSc, Thomas K. Waddell MD PhD, Marcelo Cypel MD MSc

Latner Thoracic Surgery Laboratory, University Health Network, University of Toronto
Presenter Disclosure

Pedro Reck dos Santos

The following relationships exist related to this presentation:

- AATS Michael DeBakey Scholarship (M Cypel)
- Vitrolife (Provider of Steen solution)
Introduction

• Lung metastases are often the only site of disease in patients with cancer

• Intrathoracic recurrence of resected disease is common

• In Vivo Lung Perfusion (IVLP) allows for the localized delivery of higher doses of chemotherapy in lung tissue
Introduction

- IVLP is a promising treatment strategy to potentially increase disease-free interval and patient survival.

- Perfusate drug concentration and the duration of perfusion are important factors in determining the final drug concentration in the lung.

Clinical studies associating IVLP with resectable lung metastases

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Perfusion time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratto</td>
<td>1996</td>
<td>60 minutes</td>
</tr>
<tr>
<td>Schroder</td>
<td>2002</td>
<td>20-40 minutes</td>
</tr>
<tr>
<td>Hendriks</td>
<td>2004</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>
Introduction

- Specific perfusion and ventilatory strategies allow for 12h Ex Vivo Lung Perfusion without inducing lung injury. (Cypel et al. JHLT 2008; 27: 1319-1325).

<table>
<thead>
<tr>
<th>Ex Vivo Lung Perfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acellular solution with an optimal colloid osmotic pressure</td>
</tr>
<tr>
<td>Protective flow to perfuse the lungs</td>
</tr>
<tr>
<td>Protective ventilatory strategy</td>
</tr>
<tr>
<td>Positive left atrial pressure</td>
</tr>
<tr>
<td>Pulmonary artery pressure within the normal range</td>
</tr>
<tr>
<td>Normothermia</td>
</tr>
</tbody>
</table>
Objectives

• To demonstrate the feasibility and safety of 4h modified IVLP

• To demonstrate that the perfusion technique does not induce acute lung injury.
Material and Methods

Six Pigs → Four Hours of Left Lung IVLP → Single Pass Wash out → Four Hours of Reperfusion

Ventilatory Parameters
- Tidal Volume 8 ml/kg
- PEEP 5 cm H2O
- Respiratory Rate 16 / min
- FIO₂ 50%

Perfusion Parameters
- Flow Rate: 40% of calculated
 - Cardiac Output
- LA pressure 3-5 mmHg
- PA pressure 10-15 mmHg
- Normothermia 37°C
Material and Methods

Priming

1.2 liters of Steen solution
5000 UI of Heparin
500 mg of Solumedrol
1g of Cefazolin
End Points

• Gas exchange, Airway dynamics, and Pulmonary Vascular Resistance hourly

• Histology: Acute Lung Injury Score (range 0-12)
 Pre IVLP, Post IVLP and Reperfusion

• Radiologic assessment of the perfused lung
Results

PO2 / FiO2

- Baseline: 400 mmHg
- 1h: 420 mmHg
- 2h: 410 mmHg
- 3h: 400 mmHg
- 4h: 390 mmHg

PawpLL

- Baseline: 20 cmH2O
- 1h: 21 cmH2O
- 2h: 22 cmH2O
- 3h: 21 cmH2O
- 4h: 20 cmH2O

Pulm Vasc Resistance

- Baseline: 2500 dynes/sec/cm
- 1h: 2400 dynes/sec/cm
- 2h: 2300 dynes/sec/cm
- 3h: 2200 dynes/sec/cm
- 4h: 2100 dynes/sec/cm

Compl Dyn L L

- Baseline: 15 cmH2O
- 1h: 16 cmH2O
- 2h: 17 cmH2O
- 3h: 16 cmH2O
- 4h: 15 cmH2O
Results - Histology

Pre IVLP

Reperfusion

After IVLP

Histological analysis p=0.0784

Injury Score
Results – X Ray

Pre IVLP

Post 4 h IVLP + 4 h Reperfusion
Conclusions

- Four hours of IVLP is feasible.

- The modified technique does not induce acute lung injury.

- Prolonged and protective perfusion protocol may provide safer and more effective localized treatment to pulmonary metastases.
Thank you

pedrords@uhnres.utoronto.ca