Management of HIT in Cardiac Surgery Patients

Gabriel S. Aldea, MD

William K. Edmark Professor
Chief, Adult Cardiac Surgery
University of Washington
Seattle, WA

April 28th, 2012
92nd annual AATS
Learning Objectives:

- Incidence and significance of HIT in cardiac surgery patients
- Pathophysiology of HIT
- Diagnosis
 - HIT type II (immune mediated, clinically significant)
- Management of HIT patients
 1. Following cardiac surgery
 2. Ab positive before cardiac surgery
- Controversies and implications
Heparin: Mechanism and limitations

Heparin: mode of action

Indirect effect on thrombin via AT. Acts like a catalyst in an enzymatic reaction.
Heparin: Limitations

Heparin’s limitations

The heparin:AT complex inhibits only soluble thrombin... not fibrin-bound thrombin

- Heparin increases the affinity of thrombin for fibrin.

Heparin’s limitations

Heparin binds to plasma proteins and cells

- Heparin activates platelets directly.
- Heparin can induce an immune response in the form of HIT/HITT.
- Heparin exhibits a nonlinear dose-response.
Heparin: a natural but highly antigenic product

- Combine 5,000 lbs. intestines, 200 gallons water, 10 gallons apple cider vinegar, and 5 gallons toluene, and boil for 17 hours.

- Add 30 gallons acetic acid, 35 gallons ammonia, sodium hydroxide to adjust pH, and 235 gallons water. Bring to boil; then filter.

- Add 200 gallons hot water and allow to stand and skim off the fat.

- Keep pancreatic extract at 100°F for three days, then boil. Filter solids and assay for heparin content.
HIT and associated thrombosis occurs in the subset of patients with platelet-activating anti-PF4/H antibodies.

Adapted from Warkentin TE. Br J Haematol 2003, 121:535.
Incidence: “Iceberg Model”

- Thrombosis: 0.2%–1.0%
- Thrombocytopenia: 1%–3%
- Antibody formation: 3%–30%+
Pathophysiology

Epitome caused by conformational change of PF4

Aggregation

Thrombosis
Clinical Presentation

Classically platelet (rather than fibrin) rich “white” clot syndromes
Risk Factors for HIT

<table>
<thead>
<tr>
<th>Heparin-associated factors</th>
<th>Patient-associated factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of heparin (UFH $>$ LMWH)</td>
<td>Patient population</td>
</tr>
<tr>
<td>Source of UFH heparin (bovine lung $>$ porcine intestinal mucosa)</td>
<td>Age</td>
</tr>
<tr>
<td>Duration of heparin exposure</td>
<td>Sex (female $>$ male)</td>
</tr>
<tr>
<td></td>
<td>Genotype</td>
</tr>
</tbody>
</table>

LMWH, low molecular weight heparin; UFH, unfractionated heparin.

UFH (5.3 fold), Rx for more than 6 days (3-10 fold), surgical $>$ medical patients (3 fold, highest cardiac surgery), female (2.4 fold), elderly (2.4 fold)

Cuker A, Curr Opinions Hematology 2011
Definition and Timing of Thrombocytopenia

Definition of suspected HIT:

- >50% drop in platelet count from the highest post operative value
- occurs between day 5-14 after starting any heparin dose with or without thrombotic complication.

Timing:
- Typical Onset: between 5-10 days post CABG
- Early Onset: Day 1-4 post CABG --Previous exposure or HIT positive <100d
- Delay Onset: days or few weeks without any exposure of Heparin post CABG --High HIT antibodies titers that activate platelets
Diagnosis Often Missed

Curve: days requested, Bars: HIT Ab+
Early “negative” test may be misleading
Specific Testing for HIT

Activation assays (Functional antibodies)
- Serotonin Release Assay
- Platelet Aggregation Assay

Antigen assays (all antibodies)
- Enzyme-Linked Immunoassay (ELISA)
- PF4 Antibodies (GAM)

Less sensitive, more specific, technically demanding, not standardized

More sensitive, less specific, technically simple, standardized
Dx: Clinical Criteria and Laboratory Assays

<table>
<thead>
<tr>
<th>Feature</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude of platelet count fall</td>
<td>Measured from peak platelet count after heparin exposure. Characteristically ≥50%; 30–50% in 10% of cases.</td>
</tr>
<tr>
<td>Timing of platelet count fall</td>
<td>Characteristically 5–14 days after initial heparin exposure. Rapid-onset HIT within 24 h after heparin exposure may occur in patients with a previous recent heparin exposure, usually within the last 30 days.</td>
</tr>
<tr>
<td>Nadir platelet count</td>
<td>Characteristically ≥20 × 10⁹/l. May be lower in cases associated with DIC.</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>May be venous or arterial. Present in approximately half of cases at diagnosis.</td>
</tr>
<tr>
<td>Absence of hemorrhage</td>
<td>Significant bleeding is rare in HIT. Its presence may suggest an alternative diagnosis.</td>
</tr>
<tr>
<td>Absence of alternative causes of thrombocytopenia</td>
<td>Such as infection, other medications known to cause thrombocytopenia, and cardiopulmonary bypass within the previous 96 h.</td>
</tr>
</tbody>
</table>

DIC, disseminated intravascular coagulation; HIT, heparin-induced thrombocytopenia.

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunologic</td>
<td>1. Polytypic ELISA</td>
<td>>95%</td>
<td>50–89%</td>
<td>Magnitude of a positive result correlates with clinical probability of HIT</td>
</tr>
<tr>
<td></td>
<td>2. IgG-specific ELISA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. PGIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional</td>
<td>1. SRA</td>
<td>>90%</td>
<td>>90%</td>
<td>Only available at select centers; may require referral to a reference laboratory</td>
</tr>
<tr>
<td></td>
<td>2. HIPA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PGIA particle gel immunoassay, SRA serotonin release assay, HIPA heparin-induced platelet activation assay

Clinical pathological diagnosis
Cuker A J Thromb Thrombolysis 2001
Treatment Algorithm

Immediate cessation of heparin? Additional therapy?

Cuker A J Thromb Thrombolysis 2001
Management of HIT after cardiac surgery

- Formally document heparin “allergy” in PMR
- Immediately stop all heparin (low dose heparin, low molecular weight heparin, flushes etc.). Delays increase thrombosis risk
- Initiate non-heparin anticoagulation to prevent or to treat possible thrombosis *
- Avoid prophylactic platelet transfusions (increase risk of thrombosis). Only used to Rx bleeding
- Additional Rx of complications: limb amputation if threatening arterial thrombosis occurs
Non Heparin Anticoagulants

Direct Thrombin Inhibitors (DTIs):

1. **Lepirudin (Refludan®) Recombinant Hirudin**
 MOA: irreversible inhibition exosite 1 and catalytic site

2. **Bivalirudin (Angiomax®) 20-amino acid peptide**
 MOA: reversible inhibition of exosite 1 and catalytic site (once peptide bond is cleaved by plasma enzymes and thrombin itself, reverse inhibition)

3. **Argatroban**
 MOA: reversible inhibition of catalytic sites
Direct Thrombin Inhibitors
Pharmacological Therapy: HIT

<table>
<thead>
<tr>
<th>Agent</th>
<th>Initial dosing</th>
<th>Monitoring</th>
<th>Clearance (half-life)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argatroban</td>
<td>Bolus: None</td>
<td>Adjust to APTT of 1.5–3.0 times patient baseline</td>
<td>Hepatobiliary (40–50 min)</td>
</tr>
<tr>
<td></td>
<td>Continuous infusion:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal organ function \rightarrow 2 μg/kg/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liver dysfunction (total serum bilirubin >1.5 mg/dl), heart failure, postcardiac surgery, anasarca \rightarrow 0.5–1.2 μg/kg/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepirudin</td>
<td>Bolus: 0.2 mg/kg (only if life-threatening or limb-threatening thrombosis)</td>
<td>Adjust to APTT of 1.5–2.0 times patient baseline</td>
<td>Renal (80 min)</td>
</tr>
<tr>
<td></td>
<td>Continuous infusion:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Cr <1.0$ mg/dl \rightarrow 0.10 mg/kg/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Cr 1.0–1.6$ mg/dl \rightarrow 0.05 mg/kg/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Cr 1.6–4.5$ mg/dl \rightarrow 0.01 mg/kg/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Cr >4.5$ mg/dl \rightarrow 0.005 mg/kg/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalirudin</td>
<td>Bolus: None</td>
<td>Adjust to APTT of 1.5–2.5 times patient baseline</td>
<td>Enzymatic and renal (25 min)</td>
</tr>
<tr>
<td></td>
<td>Continuous infusion:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal organ function \rightarrow 0.15 mg/kg/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renal or hepatic dysfunction \rightarrow dose reduction may be necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desirudin</td>
<td>15 mg or 30 mg subcutaneous Q12h♥</td>
<td>Probably not necessary; plasma levels of drug correlate with APTT</td>
<td>Renal (2 h)</td>
</tr>
<tr>
<td>Danaparoid</td>
<td>Bolus: <60 kg \rightarrow 1500 U $60–75$ kg \rightarrow 2250 U $75–90$ kg \rightarrow 3000 U >90 kg \rightarrow 3750 U Accelerated initial infusion: 400 U/h \times 4 h, then 300 U \times 4 h Maintenance infusion: Normal renal function \rightarrow 200 U/h Renal insufficiency \rightarrow 150 U/h</td>
<td>Adjust to anti-Xa level of 0.5–0.8 U/ml (if assay is available)</td>
<td>Renal (24 h)</td>
</tr>
<tr>
<td>Fondaparinux</td>
<td>5 mg subcutaneous daily <50 kg \rightarrow 5 mg subcutaneous daily $50–100$ kg \rightarrow 7.5 mg subcutaneous daily >100 kg \rightarrow 10 mg subcutaneous daily</td>
<td>None</td>
<td>Renal (17–20 h)</td>
</tr>
<tr>
<td></td>
<td>Cl_{Cr}, 30–50 ml/min \rightarrow use caution Cl_{Cr}, <30 ml/min \rightarrow contraindicated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thrombosis events with DTIs

Patients with thrombosis complicating HIT

Composite endpoint: all-cause mortality, limb amputation, new thrombosis

- Controls, n=46
- Argatroban, n=144
- Controls, n=75
- Lepirudin, n=113

Marked reduction in endpoints *
Treatment of HIT (cont’d)

- Warfarin Rx recommended for 3-4 months
- Consider Warfarin after recovery of platelets (>150K)
- Avoid early warfarin without DTI Rx:
 Increase risk of limb necrosis during acute HIT caused by depletion of protein C
 - Occur in 5-10% of patients with HIT-associated DVT receiving anticoagulant
- 5-day overlap of non-heparin anticoagulant
 - Start with low dose warfarin
- Assays may be required to manage transition
 - DTI may impact PT
 - Chromogenic factor Xa assay
Heparin antibody formation after cardiac surgery: common

<table>
<thead>
<tr>
<th>Study</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visentin et al. (1996)</td>
<td>39%</td>
</tr>
<tr>
<td>Trossaert et al. (1998)</td>
<td>27%</td>
</tr>
<tr>
<td>Pouplard et al. (1999)</td>
<td>25%</td>
</tr>
<tr>
<td>Warkentin et al. (1999)</td>
<td>50%</td>
</tr>
<tr>
<td>Francis et al (2002)</td>
<td>42%</td>
</tr>
</tbody>
</table>
GUSTO IV Substudy Results

- **AB Pos (n=23)**
- **AB Neg (n=195)**

Death or MI
- AB Pos: 22%
- AB Neg: 6%
- p=0.008

Death
- AB Pos: 13%
- AB Neg: 6%
- p=0.217

MI
- AB Pos: 11%
- AB Neg: 6%
- p=0.012

3-4 fold increased risk

Heparin exposure in patients with ‘asymptomatic’ antibodies

466 patients undergoing CABG:
- 59 (12.7%) patients HIPA positive pre-op
- Odds Ratio for complications = 2.15 (1.15-4.04; P=0.017)

What are the treatment options for patients who have HIT and must undergo cardiac surgery?
Heparin re-exposure with history of HIT

<table>
<thead>
<tr>
<th>Clinical picture</th>
<th>Laboratory profile</th>
<th>Recommended intraoperative anticoagulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Immunologic assay</td>
<td>Functional assay</td>
</tr>
<tr>
<td>Remote HIT</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Subacute HIT</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Acute HIT</td>
<td>Positive</td>
<td>Positive</td>
</tr>
</tbody>
</table>
Cardiac Surgery: Patients with acute or subacute HIT

Options:
1. Postpone cardiac surgery for several months, then may use heparin
2. Bivalirudin
3. Lepirudin
4. Epoprostenol + Heparin
5. Tirofiban + heparin
6. Danaparoid (withdrawn from the US market)
7. Off-pump technique using bivalirudin, lepirudin, or danaparoid if subacute HIT
Bivalirudin: EVOLUTION-ON study
J Thoracic and Cardiovascular Surgery 2006

- Objectives: To evaluate the safety and efficacy of bivalirudin vs. heparin/protamine
- Methods: randomized, open-label, multicenter trial
 patients: CABG on-pump
 1. Bivalirudin: 101 patients
 (1mg/kg IV bolus then 2.5 mg/kg/h) Goal 2.5xbasline ACT
 2. Heparin: 49 patients
- Exclusion criteria: recent use of gp2b/3a antagonist, ADP antagonist, LMWH, thrombolytics
- Results:
 - Rapid and sustained increase in ACT.
 - No difference in % procedural success in 7 days, 30 days, 12 weeks
 * procedural success defined as freedom from death, Q wave MI, stroke or revascularization.
 - Higher blood loss in postop 2 hours in bivalirudin, no difference after 24 hours. No difference in intracranial, GI, intraocular, or retroperitoneal bleed.
Bivalirudin: EVOLUTION-OFF study
J Thoracic and Cardiovascular Surgery 2006

- Objectives: To evaluate the safety and efficacy of bivalirudin vs. heparin/protamine in off-pump CABG
- Methods: randomized, open-label, multicenter trial
 1. Bivalirudin: 105 patients
 2. Heparin: 52 patients
- Exclusion criteria: with HIT, previous sternotomy, on dialysis, stroke within 6 months, receive warfarin, clopidogrel, lepirudin, or agatroban, allergy with study drugs
- Results:
 - No difference in death, Q wave MI, repeat coronary revascularization and stroke at day 7/discharge.
 - At 30 days, higher number of stroke in heparin group than bivalirudin.
 - All-cause mortality was low (2%) at 30 days and 12 weeks.
 - More blood products transfused require for bivalirudin group despite similar rate of transfusion compared with heparin/protamine.
Bivalirudin: Plasma Levels

Plasma concentrations versus time

- Bolus 1mg/kg
- Bolus 0.75 mg/kg
- Infusion 2.5 mg/kg/h
- Infusion 1.75 mg/kg/h

- 25 minute half-life
- Shown to reduce risk of ischemia in PCI (6.5 mcg/mL)

Monitoring still required, ACT indicates drug presence
Surgical (Intra-Op) Considerations

• Eliminate all heparin (lines, SG, cannulas, OR and ICU)

• Anticoagulation and monitoring
 – Initial delivery (loading)
 – Continued (uninterrupted) drug infusion
 • route/location (make sure drug is delivered)

• Avoid stagnation
Surgical Considerations
Avoid Stagnation I

- Stagnation = thrombin
- Large bore, soft flow cannulas (minimize shear and turbulence)
- Closed systems (minimize blood air interface)
Avoid Stagnation II

• Cardioplegia
 – crystalloid vs. blood
 – flush blood cardioplegia unto field between doses
• All field (pericardial) suction directed to cell saver
• Thoughtful use of cardiac vents (intra cardiac blood)
 – Continuous vs. intermittent use
• Careful management of cardiotomy suction
 – Monitor carefully for thrombosis
 – Either re circulate continuously or send to cell saver
Special Considerations

• Excess volume (cardiotomy)
 – Cannot use UF during CPB

• Circulatory arrest
 – Unknown (extreme re warming, stagnation)

• Renal failure or insufficiency
 – MUF vs. patience and time
MUF: Parallel Circuits

Aortic vent/plegia

Keep circuits separate, use cardioplegia lines and roller pump for MUF circuit

Retrograde
Into RA

UF

CPB
Post Operative Care

- No heparin in any flushes
- Discontinue deep lines early (nidus for thrombus formation)
- Coumadin anticoagulation as needed
- Bivalirudin for AF, early mechanical valve Rx
- Consider routine DTI

OR

- Vigilance: test any potential post-op (heparin Rx) patients for potential HIT and treat as needed
Summary

• About 35-65% of the patients on CPB will be HIT Ab positive, but only a small percentage of those patients experience clinical HITT syndrome.

• Recognizing post op HIT/HITT is important. If HIT is highly suspected, initiate DTI anti-coagulation therapy immediately to prevent thrombotic events.

• Many anticoagulants are available for treatment of HIT, select agent based on patient’s profile and institutional experience.

• Test suspected patients for HIT/HITT pre operatively

• Delay surgery if possible. Heparin induced antibodies (IgG) usually become undetectable by 100 days (median=50 days).
Summary

- Heparin can be used in patients with previous HIT for cardiopulmonary bypass (CPB), provided weakly positive by Ab assay but negative washed platelet activation (functional) assay.
- Bivalirudin and lepirudin are commonly used during CPB in patients with acute or subacute HIT.
 - Requires planning (protocols) and training
- Ab positive patients (no clinical HIT) still carry a higher TE risk during CV interventions
Thank you for your attention
Questions ?
References:

References:

Pathophysiology