Disclosures

- No disclosures relevant to this presentation.

- Opinions are my own, based on 30 + years in the field of CVT surgery and critical care and my interpretation of the literature.
Perspective

CT Surgeon - Georgetown University 20 years
• Heart Transplantation Program Director

Cardiothoracic Surgical Critical Care
• George Washington University Medical Center
• Johns Hopkins University – Cardiac Surgery ICU

Development and Direction of the Annual Conferences
• Cardiothoracic Surgical (CTS) Critical Care 2004 - 2008
• Cardiovascular-Thoracic (CVT) Critical Care 2009 - 2011

Creation & Development of Non-Profit Educational Found’n: FACTS-Care

Co-Director AATS/STS Postgraduate CT Critical Care Course 2010, 2011

Co-Director STS CT Critical Care Symposium 2011, 2012
Setting the Stage for the

“AATS/STS
Cardiothoracic Critical Care Symposium”
Driving the “The Ongoing Evolution”

- Increased Severity of Clinical States
- Advances in Supportive Technology & Pharmacology
- The Changing CT Critical Care Team
- New Information Technology
- Quality Improvement Initiatives
Increased Severity of Clinical States
More Complex Critical Care Situations

Maximally Support Technology
 • Now creates possibility of survival, when previously there was none!
 • New Protocols, Side-effects & Risks

New Surgical / Interventional Procedures
 • Some suitable for high-risk patients, previously considered “inoperable”
High Acuity Clinical Issues

- LV / RV Failure +/- Requiring Mechanical Support
- ALI / ARDS / TRALI
- Acute Renal Failure – CSA - AKI
- Mesenteric Ischemia
- Cerebral Dysfunction / Edema / Infarction
- Endocrine Insufficiencies – Hyperglycemia, Adrenal, Thyroid
- Coagulopathies / Blood Product Transfusions
- Systemic & Local Infections
- Multi-System Organ Failure
Table 1. Distribution of Risk Factors and Frequency of Adverse Outcomes in Overall Study Population, Isolated Coronary Artery Bypass Graft Surgery (2002–2006)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of Patients</th>
<th>Percent of Patients Experiencing Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>774,881</td>
<td>100.0</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 55</td>
<td>137,318</td>
<td>17.72</td>
</tr>
<tr>
<td>55–64</td>
<td>221,697</td>
<td>28.61</td>
</tr>
<tr>
<td>65–74</td>
<td>245,132</td>
<td>31.63</td>
</tr>
<tr>
<td>≥ 75</td>
<td>170,734</td>
<td>22.03</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>560,006</td>
<td>72.27</td>
</tr>
<tr>
<td>Female</td>
<td>214,875</td>
<td>27.73</td>
</tr>
</tbody>
</table>

STS National Database Risk Factors

CABG

<table>
<thead>
<tr>
<th>Renal Function</th>
<th>No.</th>
<th>%</th>
<th>Mort</th>
<th>CVA</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine < 1.00 mg/dL</td>
<td>274,197</td>
<td>35.39</td>
<td>1.6</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Creatinine 1–1.49 mg/dL</td>
<td>398,833</td>
<td>51.47</td>
<td>2.0</td>
<td>1.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Creatinine 1.5–1.99 mg/dL</td>
<td>57,779</td>
<td>7.46</td>
<td>4.5</td>
<td>2.3</td>
<td>10.8</td>
</tr>
<tr>
<td>Creatinine 2.0–2.49 mg/dL</td>
<td>12,463</td>
<td>1.61</td>
<td>6.9</td>
<td>2.9</td>
<td>14.3</td>
</tr>
<tr>
<td>Creatinine ≥ 2.5 mg/dL</td>
<td>7,906</td>
<td>1.02</td>
<td>8.2</td>
<td>3.2</td>
<td>20.4</td>
</tr>
<tr>
<td>Dialysis</td>
<td>12,415</td>
<td>1.60</td>
<td>8.4</td>
<td>2.7</td>
<td>*NA</td>
</tr>
<tr>
<td>Missing</td>
<td>11,288</td>
<td>1.46</td>
<td>3.3</td>
<td>1.2</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Acute Renal Failure

Clinical Issues in Cardiac Surgery Patients

- Volume Overload Consequences
- Increase Risk of Infections
High Acuity Case Example

- 65 yo man, S/P AVR (Tissue) 5 years previously
- Developed Coag negative Staph Bioprosthetic Valve Endocarditis with an Aortic Root Abscess
- Underwent Re-operative Median Sternotomy, Removal of AVR, Debridement of Abscess Cavity, Reconstruction of Aortic Root with Homograft
- Extensive adhesions
- TBT 195’
- Major Coagulopathy – Packing to Control
“Open Chest Protocol”

Used in Extreme Situations:

- Continued bleeding / Coagulopathy requiring mediastinal packing
- Marked Mediastinal & Pulmonary Edema
 - Prolonged CPB time
 - Preoperative shock state – MI, CP Arrest
- Emergency ECMO / Temporary VAD
Open Chest Protocol
ICU “Open Chest Protocol”

- Full Ventilatory Support – SIMV with PS & PEEP
 - Compromised Respiratory Mechanics
 - Transfusion Associated Acute Lung Injury (TRALI)
- Hemodynamic Monitoring incl Mixed Venous O2 Sats
- Optimizing Hemodynamics & Perfusion
 - Potential Mechanical Assist / ECMO
ICU “Open Chest Protocol”

- Acute Renal Insufficiency
 - Optimal Renal Perfusion

- Management of Volume Overload
 - Diuretics
 - Hemofiltration / CVVHD

- Cont IV Sedation & Analgesia
 - Periodic Neuro Assessment
 - Optimal Cerebral Perfusion
ICU “Open Chest Protocol”

- Correction of Coagulopathy
 - Preoperative Anti-Platelet Therapy
 - Aprotinin Controversy
 - Increasingly Recognized Risks of Blood Transfusion

- Return to OR for Removal of Pack, Reassessment, & Closure

- Prevention of Infection
 - Antibiotics until 24 hrs after Chest Closure
Advances in Supportive Technology & Pharmacology
New & Recurrent Issues & Controversies

Support of the Circulation
- Optimal Combinations of Pharmacologic Agents
- When to Use Mechanical Support & What System

Management of Pulmonary Hypertension
- Latest Strategies
New & Recurrent Issues & Controversies

Respiratory Failure
- Optimal Ventilator Mode & Protocol to Wean Complex Patients from the Ventilator
- ALI / ARDS – Optimal Ventilatory Support

ECMO
- Indications
- Technology
- Veno-Venous vs. Veno-Arterial
New & Recurrent Issues & Controversies cont’d

Renal Insufficiency / Renal Failure
 • Management of Volume Overload
 • Renal Replacement Therapy
 • When to Start
 • What System & What Dose
Advances in Pharmacology

- Vasoactive Agents
- Anticoagulants & Antiplatelet Agents
- Antiarrhythmics
- Antimicrobials
- Diuretics
- Sedatives/Analgesics
Complex Supportive Technology

- Advanced Ventilator Systems
- Ventricular Assist Devices
- ECMO Systems
- Renal Replacement
Advances in Supportive Technology

- Invasive & Non-Invasive Monitoring Systems
- Point of Care Laboratory Systems
- ICU Monitoring & Alert Systems

Invitation - Visit “The ICU of the Future”
The Changing Multi-Disciplinary CT Critical Care Team
Earlier Model of CT Critical Care

- CT Surgeon directs the Critical Care.

- CT Surgeon, His/Her House Staff, PA’s and Critical Care Nurses perform most of the care.

- Critical Care is learned during Residency and in Clinical Practice.
The CT Surgeon as Critical Care Physician

- Critical Care is inherent to the specialty of CT surgery.
- CT Surgeons from the beginning of Training take care of many of their patients in ICU’s.
- Surgeons have the best understanding of the procedures performed and the potential complications for a particular patient.
- The Patient “places his/her life in the surgeon’s hands.”
Definition of Thoracic Surgery by American Board of Thoracic Surgery

- THORACIC SURGERY ENCOMPASSES THE OPERATIVE, PERIOPERATIVE, AND SURGICAL CRITICAL CARE OF PATIENTS WITH ACQUIRED AND CONGENITAL PATHOLOGIC CONDITIONS WITHIN THE CHEST. INCLUDED ARE …
Changing Role of CT Surgeons

ICU Attendings
- CT Surgeons
- Non-Surgeon Intensivists
- Certification

CT Surgical Residents & Fellows
- Operative vs Critical Care Experience
- Training
- Balance of Responsibility & Communication
The Multi-Disciplinary Team

- Increasingly Recognized as the Optimal Approach
 - Specialized Knowledge & Experience

- The CT Surgeon continues to have a Leadership Role on the team
 - Even if not directing minute to minute care.

- Important Challenges
 - Communication
 - Power-Sharing
Critical Care Certification for CT Surgeons

American Board of Surgery
- One of the Subspecialty Certifications:
 - Surgical Critical Care
- Requires a 1-Year Fellowship

American Board of Thoracic Surgery
- Only Subspecialty Certification:
 - Congenital Cardiac Surgery
- Potential Certification in the Subspecialty of CT Critical Care
Certification in the Subspecialty of CT Critical Care

Potential Criteria for Certification

- Clinical Experience Documentation
- CME Requirement
- Examination in CT Critical Care

Political Issues
Development of CT Critical Care as a Specialty from Within CT Surgery

- FACTS-Care Multi-Disciplinary
 “CVT Critical Care” Conferences:

- AATS Postgraduate CT Critical Care Courses:

- STS CT Critical Care Symposia
 2011, 2012
Heightened Role of Advance Practice Providers

Non-Physician Providers:
- Nurse Practitioners
- Physician Assistants

Factors:
- Increased Staffing Needs with Increased Patient Acuity
- Mandated Restriction of Resident Work Hours
- Need for Surgical Residents to Maximize their Operative Experience
Heightened Role of Advance Practice Providers

Impact of Nonphysician Staffing on Outcomes in a Medical ICU

Hayley B. Gershengorn, MD; Hannah Wunsch, MD; Romina Wañab, MD; David E. Leaf, MD; Daniel Brodie, MD, FCCP; Guohua Li, MD, DrPH; and Phillip Factor, DO, FCCP

MICU’s: Beth Israel Medical Center, New York, NY Presbyterian Hospital-Columbia New York, NY

Methods: We conducted a retrospective review of 390 daytime (7:00 AM-7:00 PM) admissions to two MICUs at one hospital. In one MICU staffed by nurse practitioners and physician assistants (MICU-NP/PA) there were nonphysicians (nurse practitioners and physicians assistants) during the day (7:00 AM-7:00 PM) with attending physician coverage overnight. In the other MICU, there were medicine residents (MICU-RES) (24 h/d). The outcomes investigated were hospital mortality, length of stay (LOS) (ICU, hospital), and posthospital discharge destination.

Results: Three hundred two patients were admitted to the MICU-NP/PA and 288 to the MICU-RES. Mortality probability model III (MPM3) predicted mortality was similar (P = .14). There was no significant difference in hospital mortality (32.1% for MICU-NP/PA vs 32.3% for MICU-RES, P = .96), MICU LOS (4.22 ± 2.51 days for MICU-NP/PA vs 4.44 ± 3.10 days for MICU-RES, P = .59), or hospital LOS (14.01 ± 2.92 days for MICU-NP/PA vs 13.74 ± 3.04 days for MICU-RES, P = .56). Discharge to a skilled care facility (vs home) was similar (37.1% for MICU-NP/PA vs 32.5% for MICU-RES, P = .34). After multivariate adjustment, MICU staffing type was not associated with hospital mortality (P = .29), MICU LOS (P = .29), hospital LOS (P = .19), or posthospital discharge destination (P = .90).

Conclusions: Staffing models including daytime use of nonphysician providers appear to be a safe and effective alternative to the traditional house staff-based team in a high-acuity, adult ICU.
Multi-Disciplinary Team Dedicated to the Critical Care of CT Patients

- CT Surgeons
- Anesthesiologists & Intensivists
- Cardiologists & Radiologists
- Nurse Practitioners
- Physician Assistants
- Bedside Critical Care Nurses
- Perfusionists
- Respiratory Therapists
Intensivists, Critical Care Nurses, NP’s, PA’s, Residents & Fellows
Respiratory Therapists
Respiratory Therapists
Members of the Expanded Multi-Disciplinary Team

- Pharmacists
- Speech Language Pathologists (SLPs)
- Physical Therapists & Occupational Therapists
- Nutritionists
- Social Workers
- Patient Service Representatives
- Pastoral Care Staff
Pharmacists
CV Pharmacists

Cardiovascular Pharmacotherapy

- Newly Recognized Specialty

Pioneer in Developing the Specialty:

- Dr. Joseph Dasta
- Ohio State University
Cardiovascular Pharmacology

- Variety of Pharmaceuticals Used in the CT ICU
 - Vasopressors / Inotropes
 - Vasodilators / Antihypertensives / Beta Blockers
 - Diuretics
 - Anticoagulants / Antiplatelet Agents
 - Lipid Lowering Agents
 - Antibiotics/ Antifungal Agents
 - Immunosuppressive Agents
Cardiovascular Pharmacology

- Issues
 - Effects of Hepatic & Renal Insufficiency
 - Drug Interactions
 - Determination of Effectiveness
- Dose & Duration
Speech Pathologists

Common Types of Cases When Consulted:

- Prolonged Intubation or Hoarseness after Extubation
- Signs of Aspiration after Extubation
- Neurologic Complications
- Aortic Reconstructive Surgery
- Lung Transplantation
- Tracheostomy
- Esophageal Reconstruction
- Oral Communication for Trach/Vent Patients (speaking valves)
Speech Pathologists

Diagnosis and management of:
- Dysphagia
- Aphasia and cognitive disorders
- Voice disorders

Oral communication for Trach/Vent patients (speaking valves)

Education and training for:
- Patients
- Family members
Speech Pathology Evaluation

- Bedside Swallow Evaluation
- Video Fluoroscopic Swallow Study
Physical Therapists
Nutritionists

Formulations for Enteric Feeding

Nutritional Programs for:

- Diabetes
- Hypertension
- CHF
- Renal Failure
- Pulmonary Failure
- Hepatic Failure
The Multi-Disciplinary Critical Care Team

Challenges

• Coordinating the Expertise of Multiple Specialists

• Communication

• “Being on the Same Page”
New Information Technology
Challenges of New Information Technology

- Organization of Clinical Data to Facilitate Management
- Integration of Hospital Information Systems
 - Chemistry
 - Hematology
 - Microbiology
 - Imaging
- Display and Analysis of Clinical Trends
Evolution in Information Technology

- Electronic Medical Record
- Trend Analysis
- Computerized Order Entry
- Wireless Technology
 - Immediately Available
 - Clinical Data
 - Imaging
 - Trends
Continuing Challenges of Data Display

- Large Volume of Data
- Highlighting the Key Issues
- Organization to Guide Management
- Efficiency
Presentation of Clinical Data

Challenges

- Presentation that Guides Formulation of Plans
- A Format that Adapts to Rapid Clinical Changes
- Efficiency of Implementation / Order Entry
Quality Improvement Initiatives
Drivers of Quality Improvement

- Pursuit of Excellence
 - Intrinsic to Our Health Care Professions

- Economic Pressures
 - Hospital Value-Based Purchasing Programs
 - Publicized Hospital Data
Communications / Use of Checklists

Concerns:
- Consistency of Quality Care
- Safety / Avoiding Errors
- Continuity of Care
- Completeness of Communication

Change:
- An Awareness of Communication Gaps
- Expanded Use of Checklists
Communications / Use of Checklists

Checklists

- To Insure Consistent, Optimal Practice
- To Insure Complete Communication
- Standard in the Aviation Industry

Advocated by Authors:
- Peter Pronovost, MD
 Safe Patients, Smart Hospitals …
- Atul Gawande, MD
 The Checklist Manifesto…
Evolution in Communications

- Rounds with the Entire Critical Care Team
- “Handoffs”
 - Within the ICU
 - After Procedures / Surgery
- “Safety Huddles”
- Use of Checklists to Insure Completeness
- Better Communication to the Patient & Family
Flight 1549: All Lives Saved!
Privileged and Confidential For Peer Review Purposes Only

Department of Cardiac Surgery Quality Improvement Committee Meeting Minutes

Date:

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>DISCUSSION and PLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval of Previous Minutes:</td>
<td></td>
</tr>
<tr>
<td>Hand Hygiene:</td>
<td></td>
</tr>
<tr>
<td>CVL Dressings & Occlusions:</td>
<td></td>
</tr>
<tr>
<td>Pt Hand-off Update / ClinDoc:</td>
<td></td>
</tr>
<tr>
<td>Warmers:</td>
<td></td>
</tr>
<tr>
<td>VAD / HD Update: none</td>
<td></td>
</tr>
<tr>
<td>New Business:</td>
<td></td>
</tr>
</tbody>
</table>

Privileged and Confidential For Peer Review Purposes Only
To Improve –
You Need to Measure!
ICU Ventilation Time
(Total Initial Hrs)
(Isolated CABG)
“Making It Happen”
Challenges of Clinical Rounding

- Understanding the Issues / Problems Occurring
- Arriving at an Optimal Overall Plan
- Efficiency
- Coordination of Management
System-Structured, Issue-Oriented Approach

- Data Organization:
 - “System-Structured Profile” or “SSP”
 - Flowchart or Computerized Display to Define the Time Course

- Definition of the Clinical Situation:
 - “Issues” Related to Each System

- Dx’ic and Rx Plan for Each System / Issue
<table>
<thead>
<tr>
<th>CV</th>
<th>CV/Rhy</th>
<th>Resp</th>
<th>CXR/ABG</th>
<th>GI</th>
<th>Ne</th>
<th>Hem</th>
<th>Hem Rx</th>
<th>Microbi</th>
<th>Plans / Readback</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Rate</td>
<td>Ext'd</td>
<td>CXR</td>
<td>B/U</td>
<td>A</td>
<td>Hgb</td>
<td>ASA</td>
<td>WBC</td>
<td>CV</td>
</tr>
<tr>
<td>M</td>
<td>SR</td>
<td>O2</td>
<td>PVC</td>
<td>Bsd</td>
<td>Leth</td>
<td>Clop</td>
<td>Tm</td>
<td>MAP> SysP CVP Cl></td>
<td></td>
</tr>
<tr>
<td>Aflb</td>
<td>Rate</td>
<td>L</td>
<td>OGT</td>
<td>M4E</td>
<td>PI</td>
<td>HePSC</td>
<td>Tc</td>
<td>ASA Clop Statin Pacing Anmol Metop</td>
<td></td>
</tr>
<tr>
<td>PAAsys</td>
<td>Afl</td>
<td>SIMV</td>
<td>Med</td>
<td>NGT</td>
<td>Tolu</td>
<td>HePIV</td>
<td>Lactate</td>
<td>Resp</td>
<td></td>
</tr>
<tr>
<td>PAdias</td>
<td>Junc</td>
<td>TV</td>
<td>Inf'lls</td>
<td>UO</td>
<td>NGJT</td>
<td>OpE</td>
<td>Lines</td>
<td>Sat> PO2> PCO2<</td>
<td></td>
</tr>
<tr>
<td>CVP</td>
<td>PAC's</td>
<td>PS</td>
<td>Imp-NoC-W</td>
<td>Del</td>
<td>PTT</td>
<td>Coum</td>
<td>v</td>
<td>W</td>
<td>CTDB IS Flut V Mob Nebs</td>
</tr>
<tr>
<td>Cl</td>
<td>VT</td>
<td>PEEP</td>
<td>Del</td>
<td>PTT</td>
<td>G:</td>
<td>HePIV</td>
<td>v</td>
<td>W</td>
<td>CTDB IS Flut V Mob Nebs</td>
</tr>
<tr>
<td>SVR</td>
<td>Vf</td>
<td>VC</td>
<td>PO In</td>
<td>Sed</td>
<td>Arg</td>
<td>Arg</td>
<td>v</td>
<td>W</td>
<td>CTDB IS Flut V Mob Nebs</td>
</tr>
<tr>
<td>Satv</td>
<td>A-V B</td>
<td>PC</td>
<td>PE</td>
<td>PO In</td>
<td>Sed</td>
<td>Arg</td>
<td>v</td>
<td>W</td>
<td>CTDB IS Flut V Mob Nebs</td>
</tr>
<tr>
<td>PM A</td>
<td>Nebs</td>
<td>Airleak</td>
<td>Cur</td>
<td>TF</td>
<td>C3-</td>
<td>aXa</td>
<td>v</td>
<td>W</td>
<td>CTDB IS Flut V Mob Nebs</td>
</tr>
<tr>
<td>PM V</td>
<td>PM A V</td>
<td>FM</td>
<td>ABG</td>
<td>CPN</td>
<td>Eval</td>
<td>CT Dr</td>
<td>Fonda</td>
<td>C's</td>
<td>OGT SwEval DAT PPI H2B C&S</td>
</tr>
<tr>
<td>Temp</td>
<td>PM V</td>
<td>TC</td>
<td>pH</td>
<td>Wt</td>
<td>PPN</td>
<td>24</td>
<td>Tranf</td>
<td>BI</td>
<td>TFs Goal</td>
</tr>
<tr>
<td>S</td>
<td>EKG</td>
<td>CPAP</td>
<td>PCO2</td>
<td>Dlu</td>
<td>Sw Eval</td>
<td>Cur</td>
<td>Spu</td>
<td>MS/D</td>
<td>PT OT Mob Wd Care</td>
</tr>
<tr>
<td>M</td>
<td>Bipap</td>
<td>HFNC</td>
<td>Flow</td>
<td>PO2</td>
<td>Pass</td>
<td>Rx</td>
<td>iO</td>
<td>Neuro</td>
<td>Sed: Analg: Fent PCA Oxyc Dilau Tor Tyl</td>
</tr>
<tr>
<td>PAsys</td>
<td>AICD</td>
<td>MAWP</td>
<td>Bicarb</td>
<td>RR'</td>
<td>Med</td>
<td>Anal</td>
<td>Ste</td>
<td>Wd</td>
<td>IV IVV-ISC ISC</td>
</tr>
<tr>
<td>PAdias</td>
<td>Herz</td>
<td>ABG</td>
<td>Mech</td>
<td>pH</td>
<td>H2B</td>
<td>Oxyl</td>
<td>IV</td>
<td>Pleur</td>
<td>PF 4 SRA</td>
</tr>
<tr>
<td>C</td>
<td>PE</td>
<td>NIF</td>
<td>TV</td>
<td>PCO2</td>
<td>Cv</td>
<td>Tora</td>
<td>Ster</td>
<td>C Diff</td>
<td>Microbio Abs</td>
</tr>
<tr>
<td>Cl</td>
<td>m:</td>
<td>Tobin</td>
<td>ECMO</td>
<td>PO2</td>
<td>IH</td>
<td>Amy</td>
<td>Fk</td>
<td>Abs</td>
<td>Foley: In Out Rem</td>
</tr>
<tr>
<td>SVR</td>
<td>Flow</td>
<td>Bicarb</td>
<td>O2</td>
<td>Sat</td>
<td>Lip</td>
<td>Pro</td>
<td>SRA</td>
<td>C's</td>
<td>Foley Lines Wires ChTubes/Drains</td>
</tr>
<tr>
<td>Satv</td>
<td>Flow</td>
<td>Bicarb</td>
<td>O2</td>
<td>Sat</td>
<td>Lip</td>
<td>Pro</td>
<td>SRA</td>
<td>C's</td>
<td>Foley Lines Wires ChTubes/Drains</td>
</tr>
</tbody>
</table>
A Format for Clinical Rounds

- Development of Plans / Orders
- “Read Back” by the Bedside Nurse
- Checklist Review
- Orders are Transmitted on Rounds via Wireless Computer
Patient - Family Centered Care

- Patient – Family Centered Rounds
- Influence of a Variety of Media
 - TV
 - Internet
 - Magazines / Journals
 - Newsletters
- Heightened
 - Understanding
 - Concerns / Questions
ICU rounds
Presentation / Display of Data
Development of System-Structured Plans
Readback / Review of Checklist
Communications Among the Cardiac Surgical Team
Team Building

- Culture of Mutual Respect
- Communication – Lateral & Vertical
- Sharing of Quality Improvement Initiatives
 - Data Collection
 - Protocol Development
 - Re-Analysis
And now, to address this “Ongoing Evolution” in more detail, we continue with:
AATS/STS
CARDIOTHORACIC CRITICAL CARE SYMPOSIUM
2012

Welcome to All!
Cardiovascular-Thoracic (CVT) Critical Care 2012
9th Annual Conference
Save the Date
Thurs Oct 4 – Sat Oct 6, 2012
Omni Shoreham Hotel
Washington, DC
www.facts-care.org