Ex Vivo Reconditioning of Non-Heart-Beating Donor Lungs in a Preclinical Porcine Model

Delayed Perfusion Results in Superior Lung Function

Daniel P. Mulloy MD, Matthew L. Stone MD, Ivan Crosby MBBS, Damien J. LaPar MD MSc, David V. Webb* MD, Cristine L. Lau MD, Victor E. Laubach PhD, Irving L. Kron MD

Departments of Surgery and *Pathology
University of Virginia Health System
Presenter Disclosure

The following relationships exist related to this presentation:

No Relationships to Disclose
Lung Transplantation

• Lifesaving treatment for end-stage pulmonary disease
• Limited by donor organ shortages
 – Renewed interested in non-heart-beating (NHB) donation
 – Maastricht Categories
 • Uncontrolled: I – dead on arrival to hospital
 II – failed resuscitation
 • Controlled: III – withdrawal of life support, awaiting arrest
 IV – cardiac arrest in brain dead donor
 – NHB donor post-transplant function difficult to predict
Ex Vivo Lung Perfusion (EVLP)

• Normothermic acellular perfusion

• Conceived as a means for lung assessment *ex vivo*

• Possible rehabilitation of marginal lungs

• Many unknowns
 – Ideal timing of initiation
 – Potential for pharmacologic treatment
Hypothesis

I. EVLP will allow successful transplantation of uncontrolled NHB donor lungs

II. Immediate EVLP optimal
 – Eliminates cold ischemic time
 – Rapid initiation of treatment
NHB Donor (Maastricht I) Hypoxic Arrest
60 min “no touch” WIT

Perfadex Flush
Standard Lung Harvest

CSP Cold Static Preservation

Storage in 4°C Perfadex 4 hours

I-EVLP Immediate EVLP

Normothermic 37 °C EVLP 4 hours

Recipient left lung transplant

Reperfusion: 3.5 hrs. double-lung 30 min isolated left lung

D-EVLP Delayed EVLP

Storage in 4°C Perfadex 4 hours

Normothermic 37°C EVLP 4 hours
Groups

NHB Donor (Maastricht I)
Hypoxic Arrest
60 min “no touch” warm ischemia

Perfadex Flush
Standard Lung Harvest

CSP
Cold Static Preservation

I-EVLP
Immediate EVLP
Normothermic 37 °C EVLP
4 hours

D-EVLP
Delayed EVLP
Storage in 4°C Perfadex
4 hours
Normothermic 37°C EVLP
4 hours

Recipient left lung transplant
Reperfusion: 3.5 hrs. double-lung 30
min isolated left lung
Groups

NHB Donor (Maastricht I)
Hypoxic Arrest
60 min “no touch” WIT

Perfadex Flush
Standard Lung Harvest

CSP
Cold Static Preservation

Storage in 4°C Perfadex
4 hours

I-EVLP
Immediate EVLP

Normothermic 37 °C EVLP
4 hours

Recipient left lung transplant

Reperfusion: 3.5 hrs. double-lung 30 min isolated left lung

D-EVLP
Delayed EVLP

Storage in 4°C Perfadex
4 hours

Normothermic 37°C EVLP
4 hours
Groups

NHB Donor (Maastricht I)
Hypoxic Arrest
60 min “no touch” WIT

Perfadex Flush
Standard Lung Harvest

CSP
Cold Static Preservation

Storage in 4°C Perfadex
4 hours

I-EVLP
Immediate EVLP

Normothermic 37 °C EVLP
4 hours

Recipient left lung transplant

Reperfusion: 3.5 hrs. double-lung 30 min isolated left lung

D-EVLP
Delayed EVLP

Storage in 4°C Perfadex
4 hours

Normothermic 37°C EVLP
4 hours
Groups

NHB Donor (Maastricht I)
Hypoxic Arrest
60 min “no touch” WIT

↓

Perfadex Flush
Standard Lung Harvest

CSP
Cold Static Preservation

↓

I-EVLP
Immediate EVLP

↓

Storage in 4°C Perfadex
4 hours

D-EVLP
Delayed EVLP

↓

Recipient left lung transplant

↓

Reperfusion: 3.5 hrs. double-lung 30 min isolated left lung

Normothermic 37 °C EVLP
4 hours

↓

Storage in 4°C Perfadex
4 hours

↓

Normothermic 37°C EVLP
4 hours
Groups

NHB Donor (Maastricht I)
Hypoxic Arrest
60 min “no touch” WIT

Perfadex Flush
Standard Lung Harvest

CSP
Cold Static Preservation

Storage in 4°C Perfadex
4 hours

I-EVLP
Immediate EVLP

Normothermic 37 °C EVLP
4 hours

D-EVLP
Delayed EVLP

Storage in 4°C Perfadex
4 hours

Normothermic 37°C EVLP
4 hours

Recipient left lung transplant

Reperfusion: 3.5 hrs. double-lung
30 min isolated left lung
EVLP

- Perfusion at 37°C with Steen solution
 - Heparin – 10,000 IU
 - Methylprednisolone – 500 mg
 - Cefazolin – 500 mg

- ATL-1223 – 3 ng/kg/min
 - Selective adenosine 2A-receptor agonist
 - Decreases ischemia-reperfusion injury in lung transplantation

* Cypel et al. J Heart Lung Transplant 2008
**LaPar et al. J Thorac Cardiovasc Surg 2011
Transplant Lung Assessment

• Physiology
 – Oxygenation – \(\text{PO}_2: \text{FiO}_2 \)
 – Mean airway pressure
 – Pulmonary artery (PA) pressure

• Bronchoalveolar lavage (BAL) cytokine analysis

• Lung Injury Score
 • Neutrophil infiltration
 • Alveolar edema
 • Interstitial infiltrate

\[\text{Summed Composite Score} \]
Oxygenation Improved in D-EVLP

![Graph showing oxygenation levels during different stages of transplantation.](image-url)

- **Stage of Transplantation**
 - Pre-euthanasia
 - 1HR EVLP
 - 4HR EVLP
 - End Transplant

- **PO$_2$: FIO$_2$ (mmHg)**
 - CSP
 - I-EVLP
 - D-EVLP

- Statistical significance:
 - * $P<0.05$ vs. CSP
 - # $P<0.05$ vs. all
Oxygenation Improved in D-EVLP

Stage of Transplantation

- Pre-euthansia
- 1HR EVLP
- 4HR EVLP
- End Transplant

PO$_2$:FIO$_2$ (mmHg)

- CSP
- I-EVLP
- D-EVLP

* $P<0.05$ vs. CSP

$P<0.05$ vs. all
Oxygenation Improved in D-EVLP

* $P < 0.05$ vs. CSP

$P < 0.05$ vs. all
Oxygenation Improved in D-EVLP

* $P<0.05$ vs. CSP

$P<0.05$ vs. all

PO$_2$•FIO$_2$ (mmHg)

Stage of Transplantation

- Pre-euthansia
- 1HR EVLP
- 4HR EVLP
- End Transplant

Lines and Legends

- CSP
- I-EVLP
- D-EVLP
PA and Mean Airway Pressure Improved in D-EVLP

Pulmonary Artery Pressure

- CSP
- I-EVLP
- D-EVLP

Mean Airway Pressure

- CSP
- I-EVLP
- D-EVLP

P<0.05 vs. all
EVLNP Decreased Proinflammatory Cytokines

- IL-1β
- IL-8
- TNF-α

* P<0.05 vs. CSP
P<0.05 vs. all
Gross and Histologic Appearance
Gross and Histologic Appearance

CSP

I-EVLP

D-EVLP
Gross and Histologic Appearance

CSP

I-EVLP

D-EVLP
Gross and Histologic Appearance

CSP

I-EVLP

D-EVLP
Lung Injury Score Lower in D-EVLP

- **PMN/HPF**: *P < 0.05 vs. CSP
- **Alveolar Edema**: *
- **Interstitial Infiltrate**: # P < 0.05 vs. all
- **Composite Score**: # P < 0.05 vs. all
Summary

• Hypothesis I correct
 – Successful transplant of uncontrolled NHB donor lungs

• Hypothesis II incorrect
 – D-EVLP decreased lung injury
 • Improved lung physiology
 • Decreased proinflammatory cytokines
 • Preserved lung histology
 – Combination of cold-storage and normothermic EVLP superior to either alone
Mechanism?

– Systemic hypothermia beneficial after cardiac arrest
 • Suppressed inflammatory response
 • Decreased free radical production
 • Inhibition of apoptosis

– In NHB donors
 • Hypothermia may arrest ongoing tissue injury/inflammation
 • Avoid perfusion of a hostile organ
Mechanism?

– Systemic hypothermia beneficial after cardiac arrest
 • Suppressed inflammatory response
 • Decreased free radical production
 • Inhibition of apoptosis

– In NHB donors
 • Hypothermia may arrest ongoing tissue injury/inflammation
 • Avoid perfusion of a hostile organ
Conclusion

• Uncontrolled (Maastricht I) NHB donor lungs can be rehabilitated for successful transplantation

• Delayed EVLP is an effective strategy for rehabilitation of NHB donor lungs

• EVLP lung function predicts post-transplant function

• This strategy could be easily implemented into current protocols, potentially solving the donor organ shortage
Acknowledgements

• EVLP expertise
 – University of Toronto Lung Transplant Group – Drs. Keshavjee, Cypel, Yeung

• Laboratory staff
 – Tony Herring, Sheila Hammond, Cynthia Dodson, Rich Zacour

• Funding
 – Roche Organ Transplant Research Foundation
 – NIH T32: HL007849