Connectivity by MR spectroscopic imaging
Friday, December 2, 2011

Jullie W Pan, MD PhD
Dept. Neurosurgery, Neurology, BME
Yale University School of Medicine,
New Haven CT USA

American Epilepsy Society | Annual Meeting
Disclosure

Name of Commercial Interest: None

Type of Financial Relationship: None
Learning Objectives

• Correlation analyses of using MR spectroscopic imaging of bioenergetics and metabolism in MTLE show many limbic regions to be metabolically correlated

• Stimulator therapies are likely to be partially effective through modulating network activity
Collaborators and acknowledgements

- HP Hetherington
- R Kuzniecky
- DD Spencer
- SS Spencer
- RB Duckrow
- J Kim
- A Williamson
- A Cohen-Gadol
- S Haut
- N Avdievich

- NIH
 - P01-NS39092
 - R01-NS40550
 - M01-RR1224
 - R01-EB011639
 - R01-EB009871

- Swebilius Foundation Trust
Functional connectivity in epilepsy

• No surprise! Epilepsy is a network disorder
 – Seizure propagation network that can include abnormal and/or normal paths

• The notion of a stereotyped seizure event, i.e., a consistently propagated path— is important:
 – Semiology important for identification and planning resection
 – Brain stimulator devices: SANTE
 – Multiple subpial transections

• Can we more systematically make use of the network nature of epilepsy?
 – Defining the network is challenging: highly dependent on methodology
 – Consistency of network between patients and within a patient
There are many ways to define connectivity in the human brain

- Structurally: diffusion tractography MRI (not the same as diffusion weighted) attempts to define what physically connects $A \leftrightarrow B$
- Physiologically: uses correlation statistics to identify regions which are linked in slow (~once/10sec) moment-to-moment changes in blood flow, volume and metabolism—*not task dependent*
 - Pivots on neurovascular coupling
 - fluctuations of the gradient echo signal
 - fluctuations of the perfusion signal
- Metabolically: Correlation analyses performed with metabolic data from multiple loci
Metabolic dysfunction by FDG PET in epilepsy: a sampling of the literature

- Dlugos 1999: Hilar cell numbers correlated significantly with thalamic and basal ganglia FDG uptake (... not hippocampal FDG uptake)
- Benedek 2004: Thalamic FDG uptake is decreased in MTLE children-young adults
- Mazzuca 2011: Epileptic encephalopathy shows many regions of abnormality on FDG PET: bilateral temporal-parietal; orbito-frontal cortices
- → Significant interest to take such approaches to define connectivity in epilepsy
31P spectroscopic imaging

- Direct measures of ATP, phosphocreatine (PCr), inorganic phosphate (Pi)
- A dynamic equilibrium between high energy phosphate production and consumption
- pH changes
 - Laxer 1992
- Bioenergetic impairment
 - Kuzniecky 1992
- Could be temporally varying: seizure-dependent
- Effective voxel size of the study is ~10cc

\[
\text{PCr} + \text{ADP} \leftrightarrow \text{ATP} + \text{Cr} \\
K_{eq} = (\text{PCr}/\text{ATP}) \times (\text{ADP}/\text{Cr})
\]
\(^{31}\text{P} \) MRSI and Excitability

Compare pre-surgical in vivo hippocampal \(^{31}\text{P} \) MRSI data with electrophysiology:

Membrane repolarization is slowed with decreased PCr/ATP

Inappropriate spiking is increased with decreased PCr/ATP

Williamson Brain 2005
31P spectroscopic imaging in epilepsy

- N= 22 MTLE patients: Ipsilateral hippocampus significantly low compared to control ($P < 0.02$)
- More subtle changes seen in thalamus and striate

<table>
<thead>
<tr>
<th></th>
<th>Hip Amy</th>
<th>Hip Pes</th>
<th>Hip Body</th>
<th>Thal</th>
<th>Striatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipsi</td>
<td>0.84±0.14*</td>
<td>0.87±0.10*</td>
<td>0.92±0.08*</td>
<td>0.90±0.09</td>
<td>0.77±0.13</td>
</tr>
<tr>
<td>Contra</td>
<td>0.86±0.20</td>
<td>0.91±0.13</td>
<td>0.95±0.10</td>
<td>0.94±0.13</td>
<td>0.79±0.11</td>
</tr>
<tr>
<td>Control</td>
<td>0.97±0.15*</td>
<td>0.98±0.16*</td>
<td>0.98±0.11*</td>
<td>0.96±0.10</td>
<td>0.83±0.13</td>
</tr>
</tbody>
</table>

Pan Acta Neurol Scand. 2005
Bioenergetic changes

- In spite of no significant group decrement in subcortical nuclei, downstream structures are metabolically correlated.
- The “downstream” (thalamus, basal ganglia) metabolic values correlate with gliotic pathology in the ipsilateral hippocampus.
Network correlations

• Ipsi hippocampus energetically *not* very well correlated
• But ipsi hippocampus does correlate with pathology
• Ipsi thalamus energetically *is* well correlated
• → A downstream network which is metabolically coherent

Pan, Acta Neurol Scand. 2005
Thus far: bioenergetics and MRSI in epilepsy

- **31P**: bioenergetic correlations in limbic system in MTLE
 - Volume size brings in substantial partial volume effect
- **1H MR spectroscopic measurements**: more sensitive and therefore smaller volume size
- **1H MR spectroscopic data**: informative on mitochondrial function
 - NAA synthesized in neuronal mitochondria (Goldstein JBC 1969)
- **Oxidative stress and mitochondrial dysfunction** are both a consequence and a cause of epileptic seizures.
 - Patel Free Rad Biol Med 2004
Healthy brain: there ought to be a relationship between high energy phosphates and NAA, Cr

There are inter-individual differences in NAA, Cr and high energy phosphates
Healthy brain: NAA concentrations positively correlate with ADP

- NAA responds to cellular energetic state
- Consider NAA similar to ATP synthesis rate, also under regulation by ADP

Pan Ann Neurology 2005
NAA and Epilepsy

Contralateral vs. Ipsilateral

P<0.05 highlighted
The meaning of hippocampal NAA/Cr

- Intracranial EEG measures of total power in MTLE relate significantly with NAA/Cr—but not in non-MTLE (presumably neocortical patients)

Pan, Epilepsy Res. 2009;
Encyclopedia Epilepsy Res 2010
The meaning of hippocampal NAA/Cr

- NAA/Cr values significantly correlate with the relevant SRT score - verbal (dominant) and visuomotor (non-dominant) based on hemispheric dominance (WADA)

Pan, Epilepsy Res. 2009;
Encyclopedia Epilepsy Res 2010
MR spectroscopic imaging of NAA/Cr in the limbic system: medial temporal lobe, thalamus and putamen
Networks of Neuronal Injury in TLE (correlations of NAA decrements)

Using a pairwise correlation approach, the ipsilateral hippocampus links well with many other limbic loci.
<table>
<thead>
<tr>
<th>Hippocampus</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.26</td>
<td>1.34</td>
<td>1.31</td>
<td>1.23</td>
</tr>
<tr>
<td>SD</td>
<td>0.12</td>
<td>0.21</td>
<td>0.23</td>
<td>0.21</td>
</tr>
<tr>
<td>Patients, ipsi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.09</td>
<td>1.10</td>
<td>1.12</td>
<td>0.92</td>
</tr>
<tr>
<td>SD</td>
<td>0.21</td>
<td>0.16</td>
<td>0.31</td>
<td>0.21</td>
</tr>
<tr>
<td>% change</td>
<td>-14%</td>
<td>-18%</td>
<td>-14%</td>
<td>-25%</td>
</tr>
<tr>
<td>p-value<</td>
<td>0.001</td>
<td>0.001</td>
<td>0.014</td>
<td>0.001</td>
</tr>
<tr>
<td>Patients, contra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.16</td>
<td>1.17</td>
<td>1.15</td>
<td>1.05</td>
</tr>
<tr>
<td>SD</td>
<td>0.18</td>
<td>0.28</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>% change</td>
<td>-8%</td>
<td>-13%</td>
<td>-12%</td>
<td>-14%</td>
</tr>
<tr>
<td>p-value<</td>
<td>0.010</td>
<td>0.002</td>
<td>0.050</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Hetherington Neurology 2007
Hippocampal, thalamic, basal ganglia, insula

<table>
<thead>
<tr>
<th>Thalamus</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.30</td>
<td>1.29</td>
<td>1.61</td>
<td>1.43</td>
<td>1.72</td>
<td>1.63</td>
</tr>
<tr>
<td>SD</td>
<td>0.15</td>
<td>0.13</td>
<td>0.18</td>
<td>0.21</td>
<td>0.26</td>
<td>0.30</td>
</tr>
<tr>
<td>Patients, ipsi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.232</td>
<td>1.17</td>
<td>1.465</td>
<td>1.284</td>
<td>1.582</td>
<td>1.391</td>
</tr>
<tr>
<td>SD</td>
<td>0.162</td>
<td>0.148</td>
<td>0.2</td>
<td>0.177</td>
<td>0.192</td>
<td>0.15</td>
</tr>
<tr>
<td>% change</td>
<td>-5%</td>
<td>-9%</td>
<td>-9%</td>
<td>-10%</td>
<td>-8%</td>
<td>-15%</td>
</tr>
<tr>
<td>p-value</td>
<td>0.166</td>
<td>0.004</td>
<td>0.009</td>
<td>0.011</td>
<td>0.054</td>
<td>0.001</td>
</tr>
<tr>
<td>Patients, contra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.317</td>
<td>1.246</td>
<td>1.496</td>
<td>1.311</td>
<td>1.617</td>
<td>1.388</td>
</tr>
<tr>
<td>SD</td>
<td>0.248</td>
<td>0.165</td>
<td>0.195</td>
<td>0.165</td>
<td>0.133</td>
<td>0.262</td>
</tr>
<tr>
<td>% change</td>
<td>1%</td>
<td>-4%</td>
<td>-7%</td>
<td>-8%</td>
<td>-6%</td>
<td>-15%</td>
</tr>
<tr>
<td>p-value</td>
<td>0.718</td>
<td>0.351</td>
<td>0.026</td>
<td>0.068</td>
<td>0.250</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Hetherington Neurology 2007
A plethora of data

• Many loci! we would hypothesize that somehow they are linked by both normal and/or epileptic networks

• As the networks of the resting brain have been detected from by ongoing fluctuations in BOLD and perfusion signal – neurovascular coupling – this suggests that such networks may also be seen with metabolic function

• → correlated NAA/Cr values across the network loci (more than two at a time)
Multivariate statistics

• Many limbic loci are potentially inter-dependent
• Pairwise correlations
 – A priori selection of two loci: applies a bias as to which loci are the most pertinent
 – Multiple pairwise correlations do not address how the loci are networked
• Multivariate analysis
 – Several different types of statistical analyses are possible
 – In this approach we define how the loci are correlated: a common factor analysis
Metabolic subcortical network: a common factor analysis

- Factor 1
 - Control and MTLE: co-variance of thalami
 - MTLE: some co-variance with the ipsilateral anterior hippocampus

Pan ISMRM 2009
Metabolic subcortical network: a common factor analysis

Factor 2
- control: dominant subcortical covariance
- MTLE: strong covariance of the ipsilateral insula, bilateral basal ganglia

Pan ISMRM 2009
Can the presence (or absence) of a metabolic limbic MTL network be useful?

- Linear discriminant analysis with the “pre-classified” MTLE and control groups: assess “unknown” neocortical epilepsy
 - Limbic loci: coherent metabolic network
 - n=12, w intracranial monitoring

- 2x2 contingency table
 - 6 with non-temporal involvement correctly classified as not showing MTLE
 - 4 patients with MTLE involvement correctly classified
 - 1 of 5: surgical MTLE but not metabolic MTLE—had AMTL surgery—pathology negative for HS
 - 1 of 5: metabolic MTLE but not surgical MTLE—did not undergo resection for cognitive function

<table>
<thead>
<tr>
<th>Prediction Group</th>
<th>MRSI +limbic</th>
<th>MRSI -limbic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned/completed surgery MTLE ± neocortical resection</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Planned/completed surgery neocortical resection only</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

P<0.05, Fisher exact test
Metabolic networks in epilepsy

• In MTLE
 – Ipsi hippocampus most metabolically abnormal
 – ipsi thal correlates with multiple subcortical loci, hippocampal gliosis
 – The downstream network can be more metabolically/energetically consistent than the seizure onset zone itself

• Multivariate analysis of subcortical loci
 – Controls: bilateral thal (ant, post) metabolically co-vary
 – MTLE: bilateral thal co-vary, also with anterior ipsi hippocampus
 – MTLE: co-variance between downstream loci: bilateral basal ganglia and ipsi insula
 – Potentially useful for detecting MTLE

• The thalamic network is very identifiable: likely to be modified with electrical stimulation, e.g., SANTE
Pt CA: 27yo RHF h/o sz onset age 2yo; Aura “woosh” sensation in head, LUE tingling sensation, then stiff elevation to flex over head, head to R, L arm clonic, hears but can't respond.
PET: L temp hypo
SPECT: L temp hypo
Developmentally normal.
Npsych: “bifr-temp dysfunction”
Frontal networks in neocortical epilepsy

S/p RmF resection; pathology dysplasia + balloon cells. Now 2.5y seizure free