The Physics of Explosive Blast Traumatic Brain Injury

Geoffrey Ling, M.D., Ph.D.
Colonel, Medical Corps, US Army
Program Manager, DARPA
Professor and Interim Chair, Neurology, USUHS
Director, Neuro Critical Care, WRAMC
Disclosures

Nothing as it pertains to this lecture
Speaker’s Bureau for Sanofi and Bristol-Myers Squibb

Disclaimer

The opinions expressed in this lecture are those of the presenter alone. They do not nor should they be interpreted as endorsements by the U.S. Army, Dept. of Defense, or any other agency of the Federal Government.
OIF (2007)
OEF (2009)
Explosive Blast Injury - Categories

Four categories of blast injury:

- **Primary** – Caused by the direct blast energy
 - Crush injuries, lacerations, hemorrhage common

- **Secondary** – Caused by projectiles and other hazards created by the blast
 - Rubble, building fragments, shrapnel, etc.

- **Tertiary** – Inertial injuries caused by personnel being propelled by the blast (being thrown)

- **Quaternary** – Inhalation, burns, and anything else not described by first three
Explosive Blast TBI

Wide spectrum of neurological effects have been described

Mild TBI
- Subtle cognitive deficits, neurobehavior changes, mood and affect issues
- Both can occur together

Moderate TBI
- Loss of consciousness, overt structural damage

Severe TBI
- Severe neurological deficits, subarachnoid hemorrhage, vascular changes (acute and chronic)
Mild TBI

- Pt suffered blast TBI from about 8 feet away
- Wearing helmet/armor
- No LOC but confusion/amnesia for at least 15min (Grade 2 concussion)
- CT: normal
- Persistent neuro cognitive deficits on Day #2 (transfer)
 - Frontal lobe based tasks (digit span, word list generation)
- Normal by Day 7, returned to duty
Moderate TBI
(low velocity shrapnel)

Pt exposed to mortar explosion and

Day #14, fully recovered
Pt suffered TBI from IED

- Pt underwent extensive surgery including hemicraniectomy
- 10-day ICU care, complicated course
- Recovered to awake, following commands, extubated --- tx to civilian rehab
Close to 50% of patients of cohort of WRAMC with severe blast TBI showed angiographic evidence of delayed vasospasm.
What is the mechanism of injury?

What is the physics?
Shock front formation

- Wave at point “a” is propagating into undisturbed media
- Wave at point “b” is propagating into a local zone of compressed media

point “b” eventually catches up to “a” steepening the wavefront

S. Parks, ORA, Inc
Air blast shock front

- Initial disturbance of media (air) caused by detonation
- Shock front is a discontinuous change in air properties
- Shock front heats the air to 1000’s of degrees
 - Primary cause of personnel burns from blast, not fireball
- Shock heating is a principle mechanism of blast energy dissipation

S. Parks, ORA, Inc
Blast Wave
Airblast signatures

Free field blast signature
- “Friedlander” shape
- Shock wave followed by decay of the pulse to a negative phase

Complex blast signature
- Many reflected components
- Quasi-static component
- Target loaded from multiple directions

All real-world blast signatures will have features of both

S. Parks, ORA, Inc
Free-field ideal blast

Airburst of spherical, uncased explosives approach ideal case

Deviation from ideal – presence of ground, reflecting surfaces, multi-phase flow, ejecta, fireball, weapon casing

Friedlander equation

\[P_S(t) = P_{SO} \left[1 - \left(\frac{t - t_A}{I_A} \right) \right] e^{-\left(\frac{t-t_A}{\theta}\right)} \]

Source: TM5-855-1

S. Parks, ORA, Inc
Complex blast

- No closed form solution – many empirical equations to predict
- Multiple peaks from reflecting surfaces
- Empirical simulation software or CFD/hydrocodes
- Geometry is most significant factor defining the pressure profile

Sensor at this location

Non-responding concrete structure

S. Parks, ORA, Inc
Crater Ejecta

- Delivers significantly more impulse and loading over airblast and fragments alone
- More destructive than simple blast prediction based on NEW

Show movie: Crater formation – OF-26 detonation (030107_01)

S. Parks, ORA, Inc
Blast / Ejecta Loading

- Soil ejecta imparts over twice the impulse of air-blast alone

S. Parks, ORA, Inc
State of the Art
Bowen-Richmond Curves

Current metrics of blast injury are:
- Binary: alive or dead
- Evaluate pressure damage to the lungs
- Do not address TBI

Lethality vs Pressure

Some unstudied characteristics of explosions:
- Rapid temperature change
- Environmental chemical composition changes
- Electromagnetic pulse
- Kinetic energy transfer
Typical damage thresholds

<table>
<thead>
<tr>
<th>Peak Overpressure (psi)</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4-1.0</td>
<td>Window glass breaks</td>
</tr>
<tr>
<td>1.5-5.5</td>
<td>Concrete shatters, wood splinters</td>
</tr>
<tr>
<td>2.9-8.7</td>
<td>Bricks shear</td>
</tr>
<tr>
<td>>10.0</td>
<td>Lung damage</td>
</tr>
<tr>
<td>13.0-18.9</td>
<td>50% eardrum rupture</td>
</tr>
<tr>
<td>23.2-33.4</td>
<td>1% lethality</td>
</tr>
<tr>
<td>33.4-58.0</td>
<td>50% lethality</td>
</tr>
<tr>
<td>>58.0</td>
<td>99% lethality</td>
</tr>
</tbody>
</table>

Without body armor
Paradox

- Many blast related TBI cases
- Few blast lung cases in isolation
- Few blast bowel cases
What is the mechanism of injury?
 – Is it more than pressure alone

What is the “continuum” of this disease?

Return to first principles
Swine are exposed to blast in three environments
- **Large scale blast wave generator**: Creates operationally relevant levels of blast overpressure
- HMMWV blast test surrogate: Allows for study of complex blast in high interest small enclosed environment
- Urban warfare blast test arena: Replicates blast effects from detonation in enclosed spaces

Large scale blast wave generator:

- Creates free-field blast wave exposure to high levels with minimal explosive weight
- Free-field blast exposure occurs with any open-air detonation of an IED – free-field is relevant for study
- Explosive = 90/10 mix of nitromethane/triethylamine (TNT equivalent of 1.0)
Swine are exposed to blast in three environments

- Large scale blast wave generator: Creates operationally relevant levels of blast overpressure
- **HMMWV blast test surrogate**: Study complex blast in high interest small enclosed environment
- Urban warfare blast test arena: Replicates blast effects from detonation in enclosed spaces

HMMWV surrogate:

Charge set under surrogate, simulates blast breach into driver side floorboard

- Creates complex blast with multiple reflected peaks characteristic of exposure to IED blast inside up-armored HMMWV
Swine are exposed to blast in three environments

- Large scale blast wave generator: Creates operationally relevant levels of blast overpressure
- HMMWV blast test surrogate: Study complex blast in high interest small enclosed environment
- **Urban warfare blast test arena**: Replicates blast effects from detonation in enclosed spaces

Urban warfare blast test arena
(under construction – operational 15 July 2008)

Charge set around corner

- Creates complex blast with multiple reflected peaks characteristic of exposure to IED blast inside or between buildings
 - Generally a larger volume with more vent paths than encountered in vehicles
 - Distinctly different power spectrum than vehicle blast

Complex blast wave created by similar structure (blue)
OUTCOMES

Gait Analysis

EEG

Histopathology

Cognitive

Spatial Memory

Bioreactor with 3-D tissue constructs

General and neurophysiology
Cerebral autoregulation
Serum and CSF Protein Analysis

Cerebral Angiography

Arena: capture volume

near infrared strobe (NIR)

DMS

sample

delay

Ascending pharyngeal artery

Auricular artery
IRA Protocol/Schedule

IRB Protocol Approved: subjects and controls

- **June course**
 - Four pressure gauges, one inertial cube, and one air sampler per subject, personnel-borne
 - Two free-field pressure gauges

- **September course:**
 - Same as above and:
 - Four free-field thermal flux sensors
 - EMP sensors still being refined for implementation without disruption of tests
Evaluation Techniques and Insights

Quantico, VA: Breacher Training Facility
- Personnel-worn pressure gauges, inertial cubes and air samplers, and free-field pressure gauges
- September measurements will add thermal flux sensors, EMP sensors

Human – ALL STUDIES ARE NON-INVASIVE

Vestibular/Auditory
- Standard USMC Breacher training exercises

Neuro-Imaging
- T1/T2 weighted, FLAIR
- fMRI
- Diffusion tensor

Environment

Toxic Gas

Neuro-Behavior
- Computer based TBI testing
 - Reaction time
 - Mood affect
 - Cognitive processing
- Clinical testing
 - Clinical interviews
 - PTSD/Brain injury scale scoring
Pre-Clinical

- **Blast thresholds** associated with increasing severities of injury are identified
- **Limited* TBI**: predominantly inflammation with no neuronal damage, can persist for many days/weeks, neurobehavior effects resolve over time
- **Moderate TBI**: neuron damage, functional deficits
- **Severe TBI**: widespread neuronal death, vasospasm, diffuse cerebral edema, significant deficits and death

Clinical

- Standard USMC breacher training does not lead to TBI
- Below a threshold, repeated exposures can be tolerated without leading to TBI

*Limited TBI may or may not be equivalent to “mild” TBI, as it is defined clinically.
Conclusion

- Explosive blast related TBI covers a wide spectrum
- The coupling of pressure waves to the brain is, in part, the cause
- The long term sequelae of explosive blast TBI has yet to be fully characterized