AGS3 and AGS4 in G-protein Signaling

Joe B. Blumer, Ph.D.
Cell and Molecular Pharmacology
Medical University of South Carolina
Signal regulator (Accessory protein)

Plasma membrane

stimulus

extracellular

G-protein

effectors

Expanded functional roles for G-proteins

G-protein

G-protein

G-protein

G-protein

G-protein

G-protein

G-protein

G-protein

G-protein
Activators of G-protein Signaling

GROUP I

(GEF) (activate $G_{\alpha i}$ but not $G_{\alpha s}$, $G_{\alpha 16}$ in yeast functional assay)

AGS1 - (RASD1, DexRas1) - ras-related protein

GROUP II

(GDI) (activate $G_{\alpha i}$ but not $G_{\alpha s}$, $G_{\alpha 16}$ in yeast functional assay)

AGS3 - (Gpsm1) four GPR motifs
AGS4 - (Gpsm3, G18.1b) - three GPR motifs
AGS5 - (Gpsm2, LGN, mPINS) - four GPR motifs
AGS6 - (RGS12) - one GPR motif

GROUP III

Bind $G_{\beta\gamma}$

AGS2 - (tctex-1) - light chain of cytoplasmic dynein
AGS7 - (Trip13)
AGS8 - KIAA1866
AGS9 - (Rpn10) - proteosome component
AGS10 - (Goα)

Group II

AGS3

AGS4

AGS5
GDP + GDP

GTP + GTP

GDI

(GPR/GoLoco motif)

GPR

\(\alpha_{GDP} \) + \(\beta \gamma \)

\(\alpha_{GDP} \) + \(\beta \gamma \)

GAP/RGS

\(P_i \)

GDP

GTP

GPCR*

Effectors

Effectors
AGS3 is widely distributed in the brain and is developmentally regulated.

AGS3 is widely distributed in the brain and is developmentally regulated. AGS3

OFB--olfactory bulb
CB--cerebellum
HP--hippocampus
MED--medulla
VTA--ventral tegmental area
SN--substantia nigra
NA--nucleus accumbens
ST--striatum
PFC--prefrontal cortex
CC--cerebral cortex
THAL--thalamus
HYPO--hypothalamus
AMY--amygdala

Exploring the *in vivo* role of AGS proteins: Generation of a conditional AGS3 (Gpsm1) null mouse

A

Gpsm1 Targeting Vector

<table>
<thead>
<tr>
<th>Exon</th>
<th>WT</th>
<th>Gpsm1 null</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Western Blot Analysis

<table>
<thead>
<tr>
<th>Protein</th>
<th>Rat Brain</th>
<th>Mouse Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS3</td>
<td>(+/+)</td>
<td>(+/-)</td>
</tr>
<tr>
<td>Giα3</td>
<td>(+/-)</td>
<td>(-/-)</td>
</tr>
<tr>
<td>AGS5 (LGN)</td>
<td>(+/-)</td>
<td>(-/-)</td>
</tr>
</tbody>
</table>

WT | Gpsm1

Cerebellum

Cerebral cortex

Nissl stained sagittal brain sections
8 week male littermates
Motor coordination and learning appear unaffected in AGS3 (Gpsm1) null mice

![Accelerating Rotarod Performance Test](image)
Spatial learning and memory appear unaffected in AGS3 (Gpsm1) null mice

Radial arm water maze
Reductions in AGS3 expression in PFC or NAc blocks reinstatement of drug-seeking behavior in rats.
Cocaine-induced locomotor sensitization in WT vs AGS3 (Gpsm1) null mice
Summary: Behavioral studies of AGS3 (Gpsm1) null mice

- AGS3 knockout mice are viable and fertile
- No obvious alterations in brain cellularity or morphology
- Initial behavioral testing revealed no obvious differences in motor coordination or in spatial learning and working memory
- Locomotor sensitization to cocaine is similar to wild-type mice
- Phase II phenotyping: Targeted disruption of AGS3 by tissue-specific or inducible Cre expression
How is this regulated??

GDI
(GPR/GoLoco motif)

GPR

α_{GDP}

$\beta\gamma$

α_{GDP}

$\beta\gamma$

GTP

GDP

GAP/
RGS

P_i

α_{GTP}

$\beta\gamma$

Effectors

Effectors

GPCR*
AGS3 (650 aa) - TPR TPR TPR TPR TPR TPR TPR - GPR GPR GPR GPR

AGS4 (160 aa) - GPR GPR GPR

Bioluminescence Resonance Energy Transfer (BRET): A tool to measure AGS-Gαi interaction dynamics

AGS4-RLuc + Giα1 + YFP

AGS4 – Goi BRET signals are specific, saturable and inhibited by excess Gβγ
Agonist-induced GPCR activation decreases AGS4 – Goi interaction
Agonist-induced decreases AGS4 – Giα interaction are blocked by antagonist and pertussis toxin.
Gαi redistributes AGS4 to the plasma membrane

AGS4-GFP

AGS4-GFP + Gαi3-WT

AGS4-GFP + Gαi3-Q204L

AGS4-Q/A-GFP

AGS4-Q/A-GFP + Gαi3-WT
Agonist-induced translocation of AGS4 from membrane to cytosol

A

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Membrane</th>
<th>Cytosol</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS4-Rluc</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>G_{α_1}-YFP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α_{2A}-AR</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>UK14304</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Membrane</th>
<th>Cytosol</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS4-Rluc</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>G_{α_1}-YFP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α_{2A}-AR</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>UK14304</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Summary: GPCR regulation of AGS4 – Gαi BRET

- AGS4 – Gαi BRET signals are decreased by Gαi-linked GPCR activation
- This effect is blocked by antagonist and pertussis toxin
- Receptor activation may result in either dissociation or conformational rearrangement of a pre-formed AGS4 – Gαi complex
 - Agonist-induced translocation of AGS4 from membrane to cytosol suggests AGS4 – Gαi dissociation
- Is the receptor directly interfacing with the AGS4 – Gαi complex?
AGS4 – $G\alpha_\text{i}$ complexes are proximal to GPCRs and agonist-sensitive
AGS4 interacts with Gαi-linked GPCRs in a Gαi-dependent manner
Summary and Perspective

- The interaction of AGS4 with $G\alpha_i$ as measured by BRET is robust, saturable and specific.
- Receptor activation results in a decrease in AGS4 – $G\alpha_i$ BRET that is blocked by antagonist and PTX.
- AGS4 – α_2^A-AR BRET signals are $G\alpha_i$-dependent and reduced by receptor activation; this effect is blocked by antagonist and PTX.
- The data suggest that the interaction of AGS4 with $G\alpha_i$ enhances the presence of AGS4 at the cell surface whereupon receptor activation then dissociates AGS4 from $G\alpha_i$ and the cell cortex and into the cytosol.
- The possibility that proteins like AGS4 with multiple GPR motifs may “seed” $G\alpha$ complexes that interface with receptor provides an interesting alternative mechanism for signal processing through a GPCR.
Acknowledgements

Blumer Lab:
Ellen Maher
Melissa O’Connor Ph.D.

MUSC:
Stephen M. Lanier, Ph.D.
Sadik Oner, Ph.D.
Ali Vural
Heather Bainbridge, M.S.

Michel Bouvier, Ph.D.
Billy Breton
University of Montreal

Greg Tall, Ph.D.
University of Rochester

Lakshmi A. Devi, Ph.D.
Mount Sinai Medical Center

Thom Saunders, Ph.D.
University of Michigan

Ranney Mize, Ph.D.
Luis Marrero
LSU Health Sciences Center

Supported by NIH R01GM086510 (Blumer), NS24821 & DA025896 (Stephen M. Lanier, Ph.D.)
Membrane targeting AGS4 is not sufficient to observe BRET with $\text{G}\alpha_1$-YFP.

myr-AGS4-Rluc + $\text{G}\alpha_1$ + $\alpha_2\text{A}-\text{AR}$

$\text{G}\alpha_1$-N149I + $\alpha_2\text{A}-\text{AR}$

Graph:
- myr-AGS4 + $\text{G}\alpha_1$YFP + $\alpha_2\text{A}-\text{AR}$
- myr-AGS4 + $\text{G}\alpha_1$-YFP + $\alpha_2\text{A}-\text{AR}$ + UK
- myr-AGS4 + $\text{G}\alpha_1$-N149I + $\alpha_2\text{A}-\text{AR}$
- myr-AGS4 + $\text{G}\alpha_1$-N149I + $\alpha_2\text{A}-\text{AR}$ + UK

Axes:
- Y-axis: net BRET
- X-axis: Acceptor/Donor
Membrane targeting AGS4 is not sufficient to observe BRET with Gαi1-YFP

myr-AGS4-Rluc + Gαi1-YFP + α2A-AR

myr-AGS4 + Gαi1YFP + α2A-AR

myr-AGS4-Q/A + Gαi1-YFP + α2A-AR + UK

myr-AGS4-Q/A + Gαi1-YFP + α2A-AR + UK
AGS4-Rluc shows reduced BRET with RGS-insensitive Gαi1-YFP
AGS4 – G\(\alpha\)i BRET signals are reduced in G\(\alpha\)i-YFP mutants but are unaltered by PTX.
AGS4 – α_{2A}-AR BRET requires wild-type $G\alpha_i$

![Graph showing net BRET values for different conditions](image)

- **AGS4-Rluc**
- **α_{2A}-AR-Venus**

Values:
- Control: 0.00
- $G\alpha_i$: 0.04
- $G\alpha_i$ Q204L: 0.02
- $G\alpha_i$ G202T: 0.06
- $G\alpha_s$: 0.01

Significance:
- * indicates statistically significant difference.
AGS4 interacts with Gαi-linked GPCRs in a Gαi-dependent manner
Agonist Regulation of the AGS4 – Gαi complex: Dose Response & Timecourse
AGS4 – Gαi complexes are proximal to GPCRs and agonist-sensitive
Agonist-regulated AGS4 – GPCR BRET signals are PTX sensitive

AGS4-Rluc + α_{2A}-AR-Venus

![Diagram of AGS4-Rluc and α_{2A}-AR-Venus](image)

![Bar graph showing net BRET](image)

- Control
- UK14304
- PTX
- UK14304 + PTX

Significant changes indicated by * and **.
Classical paradigm of G protein signaling

Unexpected Roles for G protein Signaling

Accessory Proteins

Expanded functional roles for G-protein signaling
Phase I phenotyping: Behavioral Studies

- Brain Histology/Morphology
- Accelerating Rotarod Performance
- Radial Arm Water Maze
- Cocaine-induced Locomotor Sensitization